1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Harbin Dongan Engine Group Corporation LTD., Harbin 150066, China
Cite this article:
Jinxia YANG,Futao XU,Donglin ZHOU,Yuan SUN,Xingyu HOU,Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature. Acta Metall Sin, 2017, 53(6): 703-708.
K452 alloy is a nickel-based cast superalloy having the good tensile properties at high temperature and excellent corrosion resistance. It has been applied as a blade material of engines when environmental temperature is not above 950 ℃. It is found that the tensile properties of the alloy have become more scattered and unstable although its chemical compositions are not changed. Hence, the tensile properties of the alloy were studied in order to increase its stability at high temperature and improve its applied properties. Tensile specimens were prepared using the different re-melting processes. Tensile tests were done at 900 ℃. When the pouring temperature was 1430 ℃, tensile properties were not only lower than expected, but also had great degree of dispersion, i.e., the vales of ultimate strengths changed in the range of 410 MPa and 510 MPa, and the elongations changed in the range of 3.5% and 22.0%, the average contents of O and N were the highest among three tested conditions. The highest N content was 0.0028%. And the shrinkage area was higher than those in other two re-melting processes. When the pouring temperature was 1500 ℃, the tensile properties were improved, and their changing scopes became small, the average contents of O and N decreased, the shrinkage area decreased. When the refining temperature was 1590 ℃ and the holding time was 5 min, both average contents of O and N were decreased greatly, the shrinkage was not seen in the fracture surfaces. And the tensile properties were improved. Furthermore, their changing scopes were very small.
Guo J T.Materials Science and Engineering for Superalloys, Book 3: Materals and Engineering Application for Superalloy [M]. Beijing: Science Press, 2010: 328
Qin X Z.Microstructure and property stability of cast Ni-base superalloys K452 and K446 during long-term thermal exposure [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
Pope D P, Ezz S S.Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ'[J]. Int. Met. Rev., 1984, 29: 136
[5]
Sieb?rger D, Knake H, Glatzel U.Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases[J]. Mater. Sci. Eng., 2001, A298: 26
[6]
Copley S M, Kear B H.A dynamic theory of coherent precipitation hardening with application to nickel-base superalloys[J]. Trans. Metall. Soc. AIME, 1967, 239: 984
[7]
Bettge D, ?sterle W, Ziebs J.Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution[J]. Z. Metallkd., 1995, 86: 190
[8]
Chu Z K.Investigation of mechanical property and deformation mechanism of DZ951 alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
He L Z, Zheng Q, Sun X F, et al.Low ductility at intermediate temperature of Ni-base superalloy M963[J]. Mater. Sci. Eng., 2004, A380: 340
[10]
Milligan W W, Antolovich S D.Yielding and deformation behavior of the single crystal superalloy PWA 1480[J]. Metall. Trans., 1987, 18A: 85
[11]
Wang J, Zhou L Z, Sheng L Y, et al.The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure[J]. Mater. Des., 2012, 39: 55
[12]
Qin X Z, Guo J T, Yuan C, et al.Precipitation and thermal instability of M23C6 carbide in cast Ni-base superalloy K452[J]. Mater. Lett., 2008, 62: 258
[13]
Qin X Z, Guo J T, Yuan C, et al.Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy[J]. Mater. Sci. Eng., 2008, A485: 74
[14]
Qin X Z, Guo J T, Yuan C, et al.Thermal stability of primary carbides and carbonitrides in two cast Ni-base superalloys[J]. Mater. Lett., 2008, 62: 2275
[15]
Yang J X, Zheng Q, Ji M Q, et al.Effects of refining processes on metallurgical defects and room temperature' tensile properties of superalloy IN792[J]. Rare Met. Mater. Eng., 2012, 41: 692
Yang J X, Zheng Q, Sang Z R, et al.Effects of melting treatments on the mechanical properties of reverted DZ40M alloy[J]. Acta Metall. Sin., 2010, 46: 1511
Niu J P.Investigation on super refining Ni-based superalloy by vaccum induction melting [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2002
Yuan C, Guo J T, Wang T L, et al.Effect of revert proportion on microstructure and property of a cast cobalt-base superalloy K640S[J]. Acta Metall. Sin., 2000, 36: 961
Li C.Metallurgy Mechanism [M]. Harbin: Harbin Institute of Technology Press, 1996: 196
[21]
(李超. 金属学原理 [M]. 哈尔滨: 哈尔滨工业大学出版社,1996: 196)
[22]
Yang J X, Sun Y, Jin T, et al.Microstructure and mechanical properties of a Ni-based superalloy with refined grains[J]. Acta Metall. Sin., 2014, 50: 839