Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1491-1496    DOI: 10.11900/0412.1961.2016.00098
Orginal Article Current Issue | Archive | Adv Search |
AGE-HARDENING RESPONSE FOR Mg96.17Zn3.15Y0.5Zr0.18 SOLID SOLUTION ALLOY UNDER HIGH PRESSURE
Zhibin FAN,Xiaoping LIN(),Yun DONG,Jie YE,Chan LI,Bo LI
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Zhibin FAN, Xiaoping LIN, Yun DONG, Jie YE, Chan LI, Bo LI. AGE-HARDENING RESPONSE FOR Mg96.17Zn3.15Y0.5Zr0.18 SOLID SOLUTION ALLOY UNDER HIGH PRESSURE. Acta Metall Sin, 2016, 52(12): 1491-1496.

Download:  HTML  PDF(2566KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rare-earth (RE) element addition can remarkably improve the mechanical properties of magnesium alloys through solid solution and age-hardening. Increasing the solubility in the Mg matrix and enhancing the precipitation density are effective measures to improve ageing strengthening of magnesium alloys. In this work, solid solution treatment at 600~800 ℃ under 4 GPa, and then isothermal ageing at 200 ℃ for Mg96.17Zn3.15Y0.5Zr0.18 alloy was carried out. The microstructures of the high pressure solution treatment Mg96.17Zn3.15Y0.5Zr0.18 alloy before and after ageing were investigated by TEM, HRTEM, SEM and XRD, and age-hardening curves of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment under the high pressure of 4 GPa have been tested. The results show that, as the rise of the solution treatment temperature, I-Mg3Zn6Y and W-Mg3Zn3Y2 continually dissolved into the Mg matrix, and the solubility of Zn in the Mg matrix drastically improved after solution treatment under the high pressure of 4 GPa. The solubility of Zn in the Mg matrix reached up to 6.60% (mass fraction) after solution treatment at 700~800 ℃ under the high pressure of 4 GPa than 2.11% after solution treatment at 400 ℃ under the atmosphere, and the supersaturated solid solution α-Mg has been attained. After ageing treatment at 200 ℃, the peak hardness of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment under the high pressure of 4 GPa could been reached in short ageing time, the peak hardness of the Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment at 800 ℃ under 4 GPa was 105 HV, which was increased by 30% than 81 HV of the alloy after solution treatment at 400 ℃ under the atmosphere. HRTEM analysis results indicated that the high precipitation density was found in the Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment under the high pressure of 4 GPa, and some of precipitation were particle quasicrystal I-Mg3Zn6Y phases.

Key words:  Mg96.17Zn3.15Y0.5Zr0.18      alloy,      solution      treatment      under      high      pressure,      solubility,      age-hardening,      granular      quasicrystal      phase     
Received:  24 March 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51675092 and 51475486) and Natural Science Foundation of Hebei Province (No.E2014501123)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00098     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1491

Fig.1  SEM images of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment at 400 ℃ under atmosphere (a) and solution treatment at 600 ℃ (b), 700 ℃ (c) and 800 ℃ (d) under high pressure of 4 GPa
Fig.2  XRD spectra of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment at 400 ℃ under atmosphere and solution treatment at different temperatures under high pressure of 4 GPa
Fig.3  SEM image (a) and EDS analysis results of the grain boundary secondary phase of points 13 (b) and 15 (c) in Fig.3a in the solid solution of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment at 800 ℃ under 4 GPa
Fig.4  Distributions of Zn in the Mg matrix
Fig.5  Hardening curves of Mg96.17Zn3.15Y0.5Zr0.18 alloy aged at 200 ℃ after solution treatment at 400 ℃ under atmosphere and solution treatment at different temperatures under high pressure of 4 GPa
Fig.6  TEM images of Mg96.17Zn3.15Y0.5Zr0.18 alloy aged at 200 ℃ reaching peak hardness after solution treatment at 400 ℃ under atmosphere (a) and solution treatment at 800 ℃ under 4 GPa (b) (Insets in Figs.6a and b show the HRTEM images and the fast Fourier transform of precipitates, arrows A and B in Fig.6a indicate rod-shaped precipitate and granular precipitate, respectively)
[1] Ding W J.Science and Technology of Magnesium Alloys. Beijing: Science Press, 2007: 98
[1] (丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007: 98)
[2] Song W X.Metallography. Beijing: Metallurgical Industry Press, 1989: 60
[2] (宋维锡. 金属学. 北京:冶金工业出版社, 1989: 60)
[3] Liang Y, Huang X F, Wang T, Cao X J, Zhu K.China Foundry Machine Technol, 2009; (1): 8
[3] (梁艳, 黄晓锋, 王韬, 曹喜娟, 朱凯. 中国铸造装备与技术, 2009; (1): 8)
[4] Gao X, Nie J F.Scr Mater, 2007; 56: 645
[5] Buha J.Mater Sci Eng, 2008; A492: 11
[6] Clark J B.Aata Metall, 1965; 13: 1281
[7] Sturkey L, Clark J B.Inst Met, 1959; 88: 177
[8] Chen J Q, Liu J W.Mater Rev, 2008; 22: 342
[8] (陈敬区, 刘江文. 材料导报, 2008; 22: 342)
[9] Wang X L, Li C R, Guo C P, Du Z M, He W.Acta Metall Sin, 2010; 46: 575
[9] (王晓亮, 李长荣, 郭翠萍, 杜振民, 何维. 金属学报, 2010; 46: 575)
[10] Dong Y, Lin X P, Ye J, Zhao T B, Fan Z B.Mater Sci Eng, 2015; A636: 600
[11] Buha J.Mater Sci Eng, 2008; A491: 70
[12] Chen J G, Sun Y, Zhang J S, Cheng W L, Niu X F, Xu C X.J Magn Alloy, 2015; 3: 121
[13] Li X M, Starink M J.J Alloys Compd, 2011; 509: 471
[14] Jiang T J, Xiao W Q, Yang L, Shao W Z, Yuan S J, Zhen L.Mater Sci Eng, 2014; A605: 167
[15] Shi G L, Zhang D F, Zhang H J, Zhao X B, Qi F G, Zhang K.Trans Nonferrous Met Soc China, 2013; 23: 586
[16] Zhao J, Li J M, Zhao L M, Yin S, Chen J C, Wen Q X.Rare Met, 2015; 39: 97
[16] (赵军, 李冀蒙, 赵陆民, 尹硕, 陈久川, 文全兴. 稀有金属, 2015; 39: 97)
[17] Wang H Y, Lu W, Liu J H.Chin J High Pressure Phys, 2010; 24: 300
[17] (王海燕, 陆伟, 刘建华. 高压物理学报, 2010; 24: 300)
[18] Zhao S S, Peng Q P, Li H, Liu B Z.J Alloys Compd, 2014; 584: 56
[19] Jie J C, Zou C M, Wang H W, Li B, Wei Z J.J Alloys Compd, 2012; 510: 11
[20] Zhang G Z, Yu X F, Zhang Y J, Jia G L.J Mater Metall, 2006; 5(1): 61
[20] (张国志, 于溪凤, 张雅静, 贾光霖. 材料与冶金学报, 2006; 5(1): 61)
[21] Luo Z P, Zhang S Q, Tang Y L, Zhao D S.Scr Mater, 1993; 28: 1513
[22] Kim I J, Bae D H, Kim D H.Mater Sci Eng, 2003; A359: 313
[23] Zhang S J, Bian X F, Jing Y G, Li Z K, Wang C D.Spec Cast Nonferrous Alloys, 2007; 27: 698
[23] (张士佼, 边秀房, 景元高, 李贞宽, 王才东. 特种铸造及有色合金, 2007; 27: 698)
[24] Lin X P, Dong Y, Xu R, Sun G F, Jiao S H.Acta Metall Sin, 2011; 47: 1550
[24] (林小娉, 董允, 徐瑞, 孙桂芳, 焦世辉. 金属学报, 2011; 47: 1550)
[25] Lin X P, Dong Y, Xu R, Zheng R G, Jiao S H.Rare Met Mater Eng, 2013; 42: 2309
[25] (林小娉, 董允, 徐瑞, 郑润国, 焦世辉. 稀有金属材料与工程, 2013; 42: 2309 )
[26] Батншeв А И, translated by Zhang J S. Crystallization of Metal and Alloys Under Pressure. Harbin: Harbin University of Techonology Press, 1987: 23
[26] (Батншeв А И 著, 张锦升译. 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社, 1987: 23)
[27] Jie J C, Zou C M, Wang H W, Wei Z J.Acta Metall Sin, 2014; 50: 971
[27] (接金川, 邹鹑鸣, 王宏伟, 魏尊杰. 金属学报, 2014; 50: 971)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[10] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[11] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[15] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
No Suggested Reading articles found!