Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1527-1535    DOI: 10.11900/0412.1961.2016.00044
Orginal Article Current Issue | Archive | Adv Search |
AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING
Yanqi YIN,Cuilan WU,Pan XIE,Kai ZHU,Songli TIAN,Mei HAN,Jianghua CHEN
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Cite this article: 

Yanqi YIN,Cuilan WU,Pan XIE,Kai ZHU,Songli TIAN,Mei HAN,Jianghua CHEN. AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING. Acta Metall Sin, 2016, 52(12): 1527-1535.

Download:  HTML  PDF(6019KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For decades, transformation induced plasticity (TRIP) assisted steels with high tensile strength and exceptional ductility at room temperature have attracted a great deal of attentions. Their applications are often limited due to the low yield strength. In this work, an ultrafine grained (UFG) duplex Mn12Ni2MoTi(Al) TRIP steel with high yield strength and good ductility is fabricated by cold rolling and subsequent annealing at 710~745 ℃. The microstructure and mechanical properties of the steels with different heat treatment conditions are investigated by means of XRD, SEM, TEM, hardness and tensile tests. It is found that after annealing at 710~745 ℃, the deformation microstructure of the cold-rolled samples has transformed into a sub-micron UFG duplex microstructure consisting of austenite, ferrite and dispersed second-phase precipitations. The second-phase precipitations formed during annealing are rich in Ti, Mo and Si, and play an important role in preventing the ultrafine grains from coarsening, which results in high yield strength and good thermal stability. After annealing at 710 ℃ for 24 h, the average grain size of the UFG steel is still less than 500 nm. The elongation of the UFG duplex steel is increasing with the increment of the volume fraction of austenite in the UFG duplex steel at room temperature. The volume fraction of austenite in the UFG duplex steel at room temperature first increases and then decreases with the annealing temperature and time increasing, and reaches the maximum value when annealing at 745 ℃ for 0.5 h. The yield strength and total elongation of the UFG steel can be as large as 900 MPa and 23%, respectively, which are about double those of the quenched martensitic sample.

Key words:  ultrafine      grained      duplex      steel,      second      phase      strengthening,      TRIP      effect,      thermomechanical      process,      mechanical      property     
Received:  26 January 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.11427806 and 51371081)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00044     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1527

Fig.1  XRD spectra of samples subjected to different heat treatment processes(a) 65%CR sample and samples annealed at 682~ 850 ℃ for 0.5 h (CR—cold rolling)(b) samples annealed at 682~1100 ℃ for 1 h
Fig.2  Relative volume fraction of austenite in samples subjected to different heat treatment processes
Fig.3  XRD spectra (a) and relative volume fraction of austenite (b) of samples annealed at 710 ℃ for different times
Fig.4  SEM images of samples subjected to different heat treatment processes(a) 65%CR sample(b) 682 ℃, 1 h sample, in which the arrow shows elongated grains(c) 710 ℃, 1 h sample(d) 745 ℃, 1 h sample(e) 850 ℃, 1 h sample, in which the letter A shows lath martensite(f) 1100 ℃, 1 h sample, in which the dotted lines show prior austenite grain boundaries
Fig.5  TEM images of samples subjected to different heat treatment processes(a) 65%CR sample (b) 710 ℃, 1 h sample (c) 710 ℃, 24 h sample (d) 745 ℃, 0.5 h sample
Fig.6  Frequency histograms of grain width (a, c, e) and grain length (b, d, f) for samples 710 ℃, 1 h (a, b), 710 ℃, 24 h (c, d) and 745 ℃, 0.5 h (e, f)
Fig.7  HAADF image (a) and EDS results of square area in Fig.7a (b) for 710 ℃, 1 h sample
Fig.8  Vickers hardness curves of samples annealed at different temperatures for 1h
Fig.9  Tensile properties of the 65%CR sample and samples annealed at different temperatures for 1 h(a) tensile stress-strain curves(b) total elongation, yield strength and ultimate ten- sile strength vs annealing temperature
Fig.10  Tensile stress-strain curves of samples annealed at 710~745 ℃ for short times
[1] Huang B X. PhD Dissertation, Shanghai Jiao Tong University, 2007
[1] (黄宝旭. 上海交通大学博士学位论文, 2007)
[2] Frommeyer G, Brüx U, Neumann P.ISIJ Int, 2003; 43: 438
[3] Wu C L, Long C X, Wang S B.J Hunan Univ (Nat Sci), 2012; 39(7): 70
[3] (伍翠兰, 龙彩霞, 王双宝. 湖南大学学报(自然科学版), 2012; 39(7): 70)
[4] Tsuji N, Ueji R, Minamino Y, Saito Y.Scr Mater, 2002; 46: 305
[5] Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M.Mater Sci Eng, 2011; A528: 5025
[6] Forouzan F, Najafizadeh A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334
[7] Eskandari M, Kermanpur A, Najafizadeh A.Metall Mater Trans, 2009; 40A: 2241
[8] Rajasekhara S, Ferreira P J, Karjalainen L P, Kyrōlāinen A. Metall Mater Trans, 2007; 38A: 1202
[9] Ma Y Q, Jin J E, Lee Y K.Scr Mater, 2005; 52: 1311
[10] Song R, Ponge D, Raabe D, Speer J G, Matlock D K.Mater Sci Eng, 2006; A441: 1
[11] Ueji R, Tsuji N, Minamino Y, Koizumi Y.Sci Technol Adv Mater, 2004; 5: 153
[12] Wei Y J, Li Y Q, Zhu L C, Liu Y, Lei X Q, Wang G, Wu Y X, Mi Z L, Liu J B, Wang H T, Gao H J.Nat Commun, 2014; 5: 3580
[13] Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi S M.Mater Lett, 2010; 64: 15
[14] Song R, Ponge D, Raabe D.Scr Mater, 2005; 52: 1075
[15] Kang S, Jung Y S, Jun J H, Lee Y K.Mater Sci Eng, 2010; A527: 745
[16] Ivanisenko Y, Wunderlich R K, Valiev R Z, Fecht H J.Scr Mater, 2003; 49: 947
[17] Fukuda Y, Oh-ishi K, Horita Z, Langdon T G.Acta Mater, 2002; 50: 1359
[18] Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893
[19] Misra R D K, Ravi Kumar B, Somani M, Karjalainen P.Scr Mater, 2008; 59: 79
[20] Ueji R, Tsuji N, Minamino Y, Koizumi Y.Acta Mater, 2002; 50: 4177
[21] Eskandari M, Najafizadeh A, Kermanpur A.Mater Sci Eng, 2009; A519: 46
[22] Santos D B, Saleh A A, Gazder A A, Carman A, Duarte D M, Ribeiro E A S, Gonzalez B M, Pereloma E V.Mater Sci Eng, 2011; A528: 3545
[23] Torabinejad V, Zarei-Hanzaki A, Sabet M, Abedi H R.Mater Des, 2011; 32: 2345
[24] Mi Z L, Tang D, Jiang H T, Dai Y J, Li S S.Int J Min Met Mater, 2009; 16A: 154
[25] Luo H W, Shi J, Wang C, Cao W Q, Sun X J, Dong H.Acta Mater, 2011; 59: 4002
[26] Raabe D, Ponge D, Dmitrieva O, Sander B.Scr Mater, 2009; 60: 1141
[27] Raabe D, Ponge D, Dmitrieva O, Sander B.Adv Eng Mater, 2009; 11: 547
[28] Millán J, Sandl?bes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Ponge D, Raabe D.Acta Mater, 2014; 76: 94
[29] Ponge D, Millán J, Raabe D.Advanced Steels. Berlin: Springer, 2011: 199
[30] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[31] Chen Y, Wu C L, Xie P, Chen W L, Xiao H, Chen J H.Acta Metall Sin, 2014; 50: 423
[31] (陈燕, 伍翠兰, 谢盼, 陈汪林, 肖辉, 陈江华. 金属学报, 2014; 50: 423)
[32] De Moor E, Matlock D K, Speer J G, Merwin M J.Scr Mater, 2011; 64: 185
[33] Lee S, Lee S J, De Cooman B C.Scr Mater, 2011; 65: 225
[34] Takaki S, Fukunaga K, Syarif J, Tsuchiyama T. Mater Trans, 2004; 45: 2245
[35] Shi D K, Zhu W D. Material Physics.Xi'an: China Machine Press, 2006: 227
[35] (石德珂, 朱维斗. 材料物理. 西安:机械工业出版社, 2006: 227)
[36] Feng Y. Metal Material Science.Beijing: National Defense Industry Press, 2008: 11
[36] (凤仪. 金属材料学. 北京: 国防工业出版社, 2008: 11)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[9] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[13] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[14] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[15] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
No Suggested Reading articles found!