|
|
AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING |
Yanqi YIN,Cuilan WU,Pan XIE,Kai ZHU,Songli TIAN,Mei HAN,Jianghua CHEN |
College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
Cite this article:
Yanqi YIN,Cuilan WU,Pan XIE,Kai ZHU,Songli TIAN,Mei HAN,Jianghua CHEN. AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING. Acta Metall Sin, 2016, 52(12): 1527-1535.
|
|
Abstract For decades, transformation induced plasticity (TRIP) assisted steels with high tensile strength and exceptional ductility at room temperature have attracted a great deal of attentions. Their applications are often limited due to the low yield strength. In this work, an ultrafine grained (UFG) duplex Mn12Ni2MoTi(Al) TRIP steel with high yield strength and good ductility is fabricated by cold rolling and subsequent annealing at 710~745 ℃. The microstructure and mechanical properties of the steels with different heat treatment conditions are investigated by means of XRD, SEM, TEM, hardness and tensile tests. It is found that after annealing at 710~745 ℃, the deformation microstructure of the cold-rolled samples has transformed into a sub-micron UFG duplex microstructure consisting of austenite, ferrite and dispersed second-phase precipitations. The second-phase precipitations formed during annealing are rich in Ti, Mo and Si, and play an important role in preventing the ultrafine grains from coarsening, which results in high yield strength and good thermal stability. After annealing at 710 ℃ for 24 h, the average grain size of the UFG steel is still less than 500 nm. The elongation of the UFG duplex steel is increasing with the increment of the volume fraction of austenite in the UFG duplex steel at room temperature. The volume fraction of austenite in the UFG duplex steel at room temperature first increases and then decreases with the annealing temperature and time increasing, and reaches the maximum value when annealing at 745 ℃ for 0.5 h. The yield strength and total elongation of the UFG steel can be as large as 900 MPa and 23%, respectively, which are about double those of the quenched martensitic sample.
|
Received: 26 January 2016
|
Fund: Supported by National Natural Science Foundation of China (Nos.11427806 and 51371081) |
[1] | Huang B X. PhD Dissertation, Shanghai Jiao Tong University, 2007 | [1] | (黄宝旭. 上海交通大学博士学位论文, 2007) | [2] | Frommeyer G, Brüx U, Neumann P.ISIJ Int, 2003; 43: 438 | [3] | Wu C L, Long C X, Wang S B.J Hunan Univ (Nat Sci), 2012; 39(7): 70 | [3] | (伍翠兰, 龙彩霞, 王双宝. 湖南大学学报(自然科学版), 2012; 39(7): 70) | [4] | Tsuji N, Ueji R, Minamino Y, Saito Y.Scr Mater, 2002; 46: 305 | [5] | Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M.Mater Sci Eng, 2011; A528: 5025 | [6] | Forouzan F, Najafizadeh A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334 | [7] | Eskandari M, Kermanpur A, Najafizadeh A.Metall Mater Trans, 2009; 40A: 2241 | [8] | Rajasekhara S, Ferreira P J, Karjalainen L P, Kyrōlāinen A. Metall Mater Trans, 2007; 38A: 1202 | [9] | Ma Y Q, Jin J E, Lee Y K.Scr Mater, 2005; 52: 1311 | [10] | Song R, Ponge D, Raabe D, Speer J G, Matlock D K.Mater Sci Eng, 2006; A441: 1 | [11] | Ueji R, Tsuji N, Minamino Y, Koizumi Y.Sci Technol Adv Mater, 2004; 5: 153 | [12] | Wei Y J, Li Y Q, Zhu L C, Liu Y, Lei X Q, Wang G, Wu Y X, Mi Z L, Liu J B, Wang H T, Gao H J.Nat Commun, 2014; 5: 3580 | [13] | Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi S M.Mater Lett, 2010; 64: 15 | [14] | Song R, Ponge D, Raabe D.Scr Mater, 2005; 52: 1075 | [15] | Kang S, Jung Y S, Jun J H, Lee Y K.Mater Sci Eng, 2010; A527: 745 | [16] | Ivanisenko Y, Wunderlich R K, Valiev R Z, Fecht H J.Scr Mater, 2003; 49: 947 | [17] | Fukuda Y, Oh-ishi K, Horita Z, Langdon T G.Acta Mater, 2002; 50: 1359 | [18] | Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893 | [19] | Misra R D K, Ravi Kumar B, Somani M, Karjalainen P.Scr Mater, 2008; 59: 79 | [20] | Ueji R, Tsuji N, Minamino Y, Koizumi Y.Acta Mater, 2002; 50: 4177 | [21] | Eskandari M, Najafizadeh A, Kermanpur A.Mater Sci Eng, 2009; A519: 46 | [22] | Santos D B, Saleh A A, Gazder A A, Carman A, Duarte D M, Ribeiro E A S, Gonzalez B M, Pereloma E V.Mater Sci Eng, 2011; A528: 3545 | [23] | Torabinejad V, Zarei-Hanzaki A, Sabet M, Abedi H R.Mater Des, 2011; 32: 2345 | [24] | Mi Z L, Tang D, Jiang H T, Dai Y J, Li S S.Int J Min Met Mater, 2009; 16A: 154 | [25] | Luo H W, Shi J, Wang C, Cao W Q, Sun X J, Dong H.Acta Mater, 2011; 59: 4002 | [26] | Raabe D, Ponge D, Dmitrieva O, Sander B.Scr Mater, 2009; 60: 1141 | [27] | Raabe D, Ponge D, Dmitrieva O, Sander B.Adv Eng Mater, 2009; 11: 547 | [28] | Millán J, Sandl?bes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Ponge D, Raabe D.Acta Mater, 2014; 76: 94 | [29] | Ponge D, Millán J, Raabe D.Advanced Steels. Berlin: Springer, 2011: 199 | [30] | De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445 | [31] | Chen Y, Wu C L, Xie P, Chen W L, Xiao H, Chen J H.Acta Metall Sin, 2014; 50: 423 | [31] | (陈燕, 伍翠兰, 谢盼, 陈汪林, 肖辉, 陈江华. 金属学报, 2014; 50: 423) | [32] | De Moor E, Matlock D K, Speer J G, Merwin M J.Scr Mater, 2011; 64: 185 | [33] | Lee S, Lee S J, De Cooman B C.Scr Mater, 2011; 65: 225 | [34] | Takaki S, Fukunaga K, Syarif J, Tsuchiyama T. Mater Trans, 2004; 45: 2245 | [35] | Shi D K, Zhu W D. Material Physics.Xi'an: China Machine Press, 2006: 227 | [35] | (石德珂, 朱维斗. 材料物理. 西安:机械工业出版社, 2006: 227) | [36] | Feng Y. Metal Material Science.Beijing: National Defense Industry Press, 2008: 11 | [36] | (凤仪. 金属材料学. 北京: 国防工业出版社, 2008: 11) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|