Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 271-280    DOI: 10.11900/0412.1961.2015.00220
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF Fe-RICH PHASE PARTICLES WITH DIFFER-ENT CONCENTRATIONS ON THE BENDABILITYOF Al-Mg-Si-Cu SERIES ALLOYS
Hui XING,Mingxing GUO(),Xiaofeng WANG,Yan ZHANG,Jishan ZHANG,Linzhong ZHUANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Hui XING, Mingxing GUO, Xiaofeng WANG, Yan ZHANG, Jishan ZHANG, Linzhong ZHUANG. EFFECT OF Fe-RICH PHASE PARTICLES WITH DIFFER-ENT CONCENTRATIONS ON THE BENDABILITYOF Al-Mg-Si-Cu SERIES ALLOYS. Acta Metall Sin, 2016, 52(3): 271-280.

Download:  HTML  PDF(11108KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of Fe-rich phase particle with different contents on the bendability of the Al-Mg-Si-Cu alloys was investigated by means of bending and tensile tests, OM, SEM and TEM characterization. The results reveal that, with the increase of Fe-rich phase particle content, the bendability of the alloy sheets in the longitudinal and transverse directions was quite different, and the outer surface of the alloy sheets after bending of 180° along the two directions became much rough, especially along the transverse direction. When the Fe-rich phase concentration increased to the medium level (0.2%Fe), the quality of outer surface after bending was very good. With further increasing Fe-rich phase to the high level (0.5%Fe), micro cracks were produced after bending along the transverse direction. Although increasing Fe-rich phase concentration did not give a great effect on the elongation of the alloys in the two directions, according to the tensile fracture and microstructure in the slid surface of the specimen after bending or tension test, the roughening of outer surface of the alloy sheet without Fe-rich phase was closely related with the formation of shear bands, while for the alloy sheet with high concentration of Fe-rich phases, the formation of micro cracks after bending was mainly related with the size, morphology and distribution of coarse Fe-rich phases. In addition, based on the quantitative relationship between Fe-rich phase concentration and bendability of the alloy sheets, the models of outer surface roughening and micro cracks forming during bendingare proposed.

Key words:  Al-Mg-Si-Cu alloy      Fe-rich phase      bendability      shear band      modelling     
Received:  14 April 2015     
Fund: Supported by National High Technology Research and Development Program of China (No.2013-AA032403), National Natural Science Foundation of China (Nos.51571023 and 51301016), Fundamental Research Funds for the Central Universities (NoFRF-TP-15-051A3) and Constructed Project for Key Laboratory of Beijing (No FRF-SD-B-005B)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00220     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/271

Alloy Mg Si Cu Mn Fe Al
No.1 0.80 0.90 0.20 0.10 0.00 Bal.
No.2 0.80 1.00 0.20 0.15 0.20 Bal.
No.3 0.80 1.20 0.50 0.30 0.50 Bal.
Table 1  Chemical compositions of experimental Al-Mg-Si-Cu alloys (mass fraction / %)
Fig.1  Schematics of cutting way of bending sample(a) and semi-guided bend test (b) (1--clamp, 2--former, t--thickness of test piece, r--radius of the former)
Fig.2  Low (a~c) and high (d~f) magnified SEM images of alloys No.1 (a, d), No.2 (b, e) and No.3 (c, f) in the solution treatment condition and EDS analysis of particle A in Fig.2e (g) and particle B in Fig.2f (h)
Fig.3  TEM images of alloys No.1 (a) and No.3 (b) in the solution treatment condition and SAED pattern of particle A in Fig.3b (c)
Fig.4  Surface morphologies of the pre-aged alloy sheets after 180° bending treatment (0°--bending along the longitudinal direction, 90°--bending along the transverse direction)
Fig.5  OM images of alloys No.1 (a, b), No.2 (c, d) and No.3 (e, f) after bending along the longitudinal (a, c, e) and transverse (b, d, f) directions
Fig.6  SEM images of alloy No.3 after bending along longitudinal (a) and transverse (b) directions, high magnification of rectangular area in Fig.6b (c) and EDS analysis of particle A in Fig.6c (d)
Fig.7  Stress-strain curves of the pre-aged alloys in the different directions
Alloy Direction Yield strength / MPa Ultimate tensile strength / MPa Elongation / % n R
No.1 Longitudinal 113.2 236.6 26.30 0.312 0.725
Transverse 104.7 223.4 24.93 0.323 0.649
No.2 Longitudinal 133.0 269.2 25.73 0.298 0.700
Transverse 124.9 253.4 26.01 0.302 0.661
No.3 Longitudinal 161.8 305.6 25.37 0.288 0.645
Transverse 157.4 298.9 25.84 0.289 0.644
Table 2  Mechanical properties of the pre-aged alloys in the different directions
Fig.8  SEM images of three alloys after tensile fracture in the transverse direction and EDS analysis
(1)No.1 alloy (b) No.2 alloy (c) No.3 alloy
(2)(d) BE-SEM image of No.3 alloy (e) EDS analysis of particle A in Fig.8d
Fig 9  OM images of alloys No.1 (a, d), No.2 (b, e) and No.3 (c, f) after tensile fracture in longitudinal (a~c) and transverse(d~f) directions
Alloy Direction Initial thickness / mm Final thickness / mm Ra / mm rmin
No.1 Longitudinal 0.966 0.620 0.346 0.734
Transverse 0.998 0.700 0.298 1.013
No.2 Longitudinal 1.121 0.680 0.441 0.361
Transverse 1.089 0.710 0.379 0.583
No.3 Longitudinal 1.082 0.780 0.302 0.987
Transverse 1.081 0.880 0.201 1.985
Table 3  Minimum bend radius before cracks (rmin) of three alloys bended in the different directions
Fig 10  Schematics of bending processes for Al-Mg-Si-Cu alloys without Fe-rich particle (a) and with high concentration of Fe-rich particles (b)
[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A.Mater Sci Eng, 2000; A280: 37
[2] Wang D.Shanghai Nonferrous Met, 2013; 34(3): 130
[2] (王丹. 上海有色金属, 2013; 34(3): 130)
[3] Wang M J, Huang D Y, Jiang H T.Heat Treatment Met, 2006; (09): 34
[3] (王孟君, 黄电源, 姜海涛. 金属热处理, 2006; (09): 34)
[4] Sun J.Tech Educ, 2010; (02): 26
[4] (孙静. 技术与教育, 2010; (02): 26)
[5] Liu Y W, Wang S W.Auto Engineer, 2011; (02): 50
[5] (刘伟燕, 王书伟. 汽车工程师, 2011; (02): 50)
[6] Zhang Q X, Guo M X, Hu X Q, Cao L Y, Zhuang L Z, Zhang J S.Acta Metall Sin, 2013; 49: 1604
[6] (张巧霞, 郭明星, 胡晓倩, 曹零勇, 庄林忠, 张济山. 金属学报, 2013; 49: 1604)
[7] Cui L, Guo M X, Peng X Y, Zhang Y, Zhang J S, Zhuang L Z.Acta Metall Sin, 2015; 51: 289
[7] (崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 金属学报, 2015; 51: 289)
[8] Wang A D. Master Thesis, Dalian University of Technology, 2011
[8] (王安东. 大连理工大学硕士学位论文, 2011)
[9] Wang X F, Guo M X, Cao L Y, Luo J R, Zhang J S, Zhuang L Z.Mater Sci Eng, 2015; A621: 8
[10] Sarkar J, Kutty T R G, Wilkinson D S, Embury J D, Lloyd D J.Mater Sci Eng, 2004; A369: 258
[11] Itoh G, Suzuki T, Horikawa K. Mater Sci Forum, 2002; 396-402: 1193
[12] Hirth S M, Marshall G J, Court S A, Lloyd D J. Mater Sci Eng, 2001; A319-321: 452
[13] Datsko J, Yang C T.J Eng Ind, 1960; 82: 309
[14] Davidkov A, Petrov R H, Smet P D, Schepers B, Kestens L A I.Mater Sci Eng, 2011; A528: 7068
[15] Castany P, Diologent F, Rossoll A, Despois J F, Bezen?on C, Mortensen A.Mater Sci Eng, 2013; A559: 558
[16] Mulazimoglu M, Zaluska A, Gruzleski J, Paray F.Metall Mater Trans, 1996; 27A: 929
[17] Allen C M, O'Reilly K A Q, Cantor B, Evans P V.Prog Mater Sci, 1998; 43: 89
[18] Tanihata H, Sugawara T, Matsuda K, Ikeno S.J Mater Sci, 1999; 34: 1205
[19] Couper M J, Rinderer B, Yao J Y. Mater Sci Forum, 2006; 519-521: 303
[20] Peng X Y, Guo M X, Wang X F, Cui L, Zhang J S, Zhuang L Z.Acta Metall Sin, 2015; 51: 169
[20] (彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠. 金属学报, 2015; 51: 169)
[21] Wang X F, Guo M X, Chapuis A, Luo J R, Zhang J S, Zhuang L Z.Mater Sci Eng, 2015; A644: 137
[22] Lievers W B, Pilkey A K, Worswick M J.Mech Mater, 2003; 35: 661
[23] Lloyd D J, Weatherly G C, Perovic D D.In: Subodh K Das ed., Proceedings of Symposium: Automotive Alloys 1999, San Diego: TMS, 2000: 211
[24] Lv D. Master Thesis, Lanzhou University of Technology, 2009
[24] (吕丹. 兰州理工大学硕士学位论文, 2009)
[25] Fan X G.PhD Dissertation, Harbin Institute of Technology, 2007
[25] (樊喜刚. 哈尔滨工业大学博士学位论文, 2007)
[1] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[2] CHEN Wei, ZHANG Huan, MU Juan, ZHU Zhengwang, ZHANG Haifeng, WANG Yandong. Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy[J]. 金属学报, 2022, 58(10): 1271-1280.
[3] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[4] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[5] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[6] Jialin ZHU,Shifeng LIU,Yu CAO,Yahui LIU,Chao DENG,Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. 金属学报, 2019, 55(8): 1019-1033.
[7] ZHU Shang,LI Zhihui,YAN Lizhen,LI Xiwu,ZHANG Yongan,XIONG Baiqing. Effects of Zn Addition on the Natural Ageing Behavior and Bake Hardening Response of a Pre-Aged Al-Mg-Si-Cu Alloy[J]. 金属学报, 2019, 55(11): 1395-1406.
[8] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[9] Hongbo ZHOU, Yuhao LI, Guanghong LU. Modeling and Simulation of Hydrogen Behavior in Tungsten[J]. 金属学报, 2018, 54(2): 301-313.
[10] CUI Li, GUO Mingxing, PENG Xiangyang, ZHANG Yan, ZHANG Jishan, ZHUANG Linzhong. INFLUENCE OF PRE-DEFORMATION ON THE PRECIP- ITATION BEHAVIORS OF Al-Mg-Si-Cu ALLOY FOR AUTOMOTIVE APPLICATION[J]. 金属学报, 2015, 51(3): 289-297.
[11] PENG Xiangyang, GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong. INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS[J]. 金属学报, 2015, 51(2): 169-177.
[12] Yan ZHANG,Mingxing GUO,Hui XING,Fei WANG,Xiaofeng WANG,Jishan ZHANG,Linzhong ZHUANG. INFLUENCE OF DIFFERENT THERMOMECHANICAL PROCESSES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Al-Mg-Si-Cu ALLOY SHEETS[J]. 金属学报, 2015, 51(12): 1425-1434.
[13] MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. 金属学报, 2014, 50(9): 1087-1094.
[14] SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin. MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION[J]. 金属学报, 2014, 50(4): 387-394.
[15] ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan. STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION[J]. 金属学报, 2013, 49(12): 1604-1610.
No Suggested Reading articles found!