Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1604-1610    DOI: 10.3724/SP.J.1037.2013.00330
Current Issue | Archive | Adv Search |
STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION
ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan. STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION. Acta Metall Sin, 2013, 49(12): 1604-1610.

Download:  PDF(541KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The kinetics of precipitation in Al—0.6Mg—0.9Si—0.2Cu (mass fraction, %) alloy under different conditions was investigated by differential scanning calorimetric analyses (DSC) and microhardness measurements. The results show that, an exothermic peak at about 100—-150℃ can be observed in the DSC curve for the nature aged (T4) alloy, but no peak for the pre—aged (T4P) alloy, and the peak corresponding with β″ phase moves toward the low temperature zone for T4P alloy. The fraction of transformation Y, the rate of transformation dY/dT, and the kinetic parameters such as activation energy Q and frequency factor k0 for GP zones dissolution and β″phase transformation were calculated by Avrami—Johnson—Mehl equation. The values of activation energy for GP zones dissolution after natural aging and pre—aging were 66 and 119 kJ/mol, respectively, and the values forβ″phase formation after natural aging and pre—aging were 114 and 60 kJ/mol, respectively. The kinetics expressions were obtained as follows, for T4 alloy:YGP=1-exp[-1.3×107t exp(-7977/T)],Yβ=1-exp[-4.7×1022t2 exp(-27484/T)];for T4P alloy: YGP=1-exp[-2.4×1013 t exp(-14345/T)],Yβ=1-exp[-2.9×1011t2 exp(-14392/T)].In addition, with the increasing of aging time, the wholetrend of hardness changing for pre—aged alloy is increasing at first, and then keeps constant basically,but for the nature aged alloy, the hardness decreases after aging at 185℃ for 20 min, which was explained by the kinetics obtained above.

Key words:  Al-Mg-Si-Cu alloy      automotive sheet, nature aging      pre-aging      kinetics     
Received:  17 June 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00330     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1604

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A,Vieregge A.  Mater Sci Eng, 2000; A280: 37

[2] Birol Y, Karlik M.  Scr Mater, 2006; 55: 625
[3] Birol Y.  Mater Sci Eng, 2005; A391:175
[4] Liu H, Chen Y, Zhao G, Liu C M, Zuo L.  Trans Nonferrous Met Soc China, 2006; 16: 917
[5] Zhen L, Kang S B.  Scr Mater, 1997; 36: 1089
[6] Ou B L, Shen C H.  Scand J Metall, 2005; 34: 318
[7] Esmaeili S, Lloyd D J.  Acta Mater, 2005; 53: 5257
[8] Wei F, Li J S, Chen C Q.  Rare Met Mater Eng, 2008; 37: 1348
(魏芳, 李金山, 陈昌麒. 稀有金属材料与工程, 2008; 37: 1348)
[9] Gupta A K, Jena A K, Chaturvedi M C.  Scr Metall, 1988; 22: 369
[10] Ghosh K S, Gao N.  Trans Nonferrous Met Soc China, 2011; 21: 1199
[11] Oguocha I N A, Yannacopoulos S.  Mater Sci Eng, 1997; A231: 25
[12] Edwards G A, Stiller K, Dunlop G L, Couper M J.  Acta Mater, 1998; 46: 3893
[13] De Geuser F, Lefebvre W, Blavette D.  Philos Mag Lett, 2006; 86: 227
[14] Zhen L, Kang S B, Kim H W.  Mater Sci Technol, 1997; 13: 905
[15] Murayama M, Hono K.  Acta Mater, 1999; 47: 1537
[16] Miao W F, Laughlin D E.  Metall Mater Trans, 2000; 31A: 361
[17] Esmaeili S, Lloyd D J.  Mater Charact, 2005; 55: 307
[18] An Y G, Zhang L, Vegter H, Hurkmans A.  Metall Mater Trans, 2002; 33A: 3121
[19] Luo A, Lloyd D J, Gupta A, Youdelis W V.  Acta Metall Mater, 1993; 41: 769
[20] Ortega A.  Thermochim Acta, 1996; 284: 379
[21] Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S.  Mater Sci Eng, 1999;A262: 232
[22] Chakrabarti D J, Laughlin D E.  Prog Mater Sci, 2004; 49: 389
[23] Gaber A, Ali A M, Matsuda K, Kawabata T, Yamazaki T, Ikeno S.  J Alloys Compd, 2007;432: 149
[24] Cuniberti A, Tolley A, Riglos M V, Giovachini R.  Mater Sci Eng, 2010; A527: 5307
[25] Buha J, Lumley R N, Crosky A G, Hono K.  Acta Mater, 2007; 55: 3015
[26] Galwey A K, Brown M E.  Handbook of Thermal Analysis and Calorimetry. Amsterdam: Elesvier, 1998: 147
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[4] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[10] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[11] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[12] ZHU Shang,LI Zhihui,YAN Lizhen,LI Xiwu,ZHANG Yongan,XIONG Baiqing. Effects of Zn Addition on the Natural Ageing Behavior and Bake Hardening Response of a Pre-Aged Al-Mg-Si-Cu Alloy[J]. 金属学报, 2019, 55(11): 1395-1406.
[13] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[14] Ke ZHANG, Xinjun SUN, Mingya ZHANG, Zhaodong LI, Xiaoyu YE, Zhenghai ZHU, Zhenyi HUANG, Qilong YONG. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(8): 1122-1130.
[15] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
No Suggested Reading articles found!