1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 3 Beijing Key Laboratory of Special Melting and Reparation of High-end Metal Materials, Beijing 100083
Cite this article:
Yunsong ZHAO,Jian ZHANG,Yushi LUO,Dingzhong TANG,Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11. Acta Metall Sin, 2015, 51(10): 1261-1272.
The effect of Hf on the as-cast, heat-treated microstructures and stress rupture properties under 1100 ℃ and 140 MPa was investigated in four second generation Ni-based single crystal superalloys DD11 with various levels of Hf (0~0.80%, mass fraction) additions. The results indicate that increasing Hf addition resulted in decreasing the solidus and liquidus temperatures, while it enhanced the volume fraction of (γ+γ’) eutectic and MC carbide as well as solidification segregation. The number of micropores reduced significantly and the volume fraction of residual (γ+γ’) eutectic and MC carbide increased after heat treatment as Hf content increased. Compared to the Hf-free alloy, the stress rupture life was observed to increase in the alloys with 0.40%Hf, but dropped in the alloy containing 0.80%Hf. Hf addition increased the elemental partitioning ratio of Re, Mo, Cr, resulting in increasing γ/γ’ misfit and decreasing the spacing of γ/γ’ interfacial dislocation networks. The solution strengthing effect was also improved with the enhanced concentration of Re, Mo and Cr in γ phase in Hf-modified alloys. However, when the Hf content was 0.80% in DD11 alloy, the stress rupture properties was decreased obviously due to high volume fraction of residual (γ+γ’) eutectic and MC carbide in heat-treated microstructures.
Fund: Supported by National High Technology Research and Development Program (Nos.2012AA03-A513 and 2012AA03A511), National Basic Research Program of China (No.2010-CB631201) and Science Foundation of Ministry of Education of China (No.625010337)
Fig.1 OM images of as-cast alloys Hf-1 (a), Hf-2 (b), Hf-3 (c) and Hf-4 (d)
Fig.2 BSE-SEM images of the eutectic region of as-cast alloys Hf-3 (a) and Hf-4 (b)
Alloy
Primary dendrite
Volume fraction / %
arm spacing / μm
Eutectic
Carbide
Micropore
Hf-1
329±12
5.5±2.1
0.08±0.05
0.22±0.05
Hf-2
340±11
8.5±2.5
0.15±0.07
0.10±0.03
Hf-3
347±9
9.6±1.7
0.61±0.05
0.08±0.04
Hf-4
337±11
13.3±2.3
1.20±0.07
0.08±0.05
Table 1 Microstructures characterization of as-cast alloys
Fig.3 Solidification segregation coefficients of alloying elements in the as-cast alloys
Fig.4 DSC heating curves of four as-cast alloys (TL—liquidus temperature, TS—solidus temperature)
Fig.5 OM image (a) and interdendrite region BSE-SEM image (b) of alloy Hf-4 after heat treatment at 1320 ℃ for 6 h and then A.C.
Fig.6 Typical microstructures in the dendrite core of alloys Hf-1 (a) and Hf-4 (b) after fully heat treatment
Alloy
Size of γ’ phase / nm
Volume fraction of γ’ phase / %
Channel width of γ phase / nm
Hf-1
380±90
67.3±5.2
72±40
Hf-2
383±62
65.6±6.3
71±50
Hf-3
391±80
65.2±4.3
70±52
Hf-4
395±71
64.3±7.2
71±45
Table 2 Size and volume fraction of γ’ phase, channel width of γ phase in the dendrite cores of alloys after fully heat treatment
Fig.7 OM images of alloys Hf-1 (a), Hf-3 (b) and Hf-4 (c) after fully heat treatment
Fig.8 OM images of un-etched alloys Hf-1 (a), Hf-3 (b) and Hf-4 (c) after fully heat treatment
Alloy
Eutectic
Carbide
Micropore
Hf-1
1.10±0.12
0.05±0.02
0.62±0.12
Hf-2
1.31±0.11
0.12±0.04
0.50±0.09
Hf-3
2.50±0.14
0.31±0.03
0.31±0.08
Hf-4
5.81±0.15
0.95±0.06
0.18±0.09
Table 3 Volume fractions of residual eutectic, carbides and micropores in the interdendrite regions of alloys after fully heat treatment
Fig.9 Elemental partitioning ratio in γ/γ’ phase of alloys after fully heat treatment
Fig.10 γ/γ’ interfacial dislocation networks in alloys Hf-1 (a), Hf-2 (b), Hf-3 (c) and Hf-4 (d) after stress-rupture under 1100 ℃ and 140 MPa
Fig.11 Relationship of average interfacial dislocation spacing and average stress rupture life of alloys under 1100 ℃ and 140 MPa
Fig.12 OM images (a, c) and BSE-SEM images (b, d) of longitudinal sections of stress ruptured fracture of alloys Hf-1(a, b) and Hf-4 (c, d) under 1100 ℃ and 140 MPa
Fig.13 Schematic diagram of MC carbides blocking the diffusion passageways during solution treatment
[1]
Pollock T M, Tin S. J Propul Power, 2006; 22: 361
[2]
Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307
[3]
Siegel D J, Hamilton J. Acta Mater, 2005; 53: 87
[4]
Harris K, Wahl J B. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 45
[5]
Chen Q Z, Jones C N, Knowles D M. Mater Sci Eng, 2004; A385: 402
[6]
Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 295
[7]
Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[8]
Duhl D, Sullivan C. J Met, 1971; 23: 38
[9]
Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[10]
Zheng Y R, Cai Y L, Ruan Z C, Ma S W. J Aeronaut Mater, 2006; 26: 25 (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25)
[11]
Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095
[12]
Wang L, Wang D, Liu T, Li X W, Jiang W G, Zhang G, Lou L H. Mater Charact, 2015; 104: 81
[13]
Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2004; A385: 105
[14]
Sellamuthu R, Brody H, Giamei A. Metall Trans, 1986; 17B: 347
[15]
Baldan A. J Mater Sci, 1990; 25: 4341
[16]
Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮.金相实验技术. 北京: 冶金工业出版社, 2006: 159)
[17]
Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173
[22]
Chen Q Z, Kong Y H, Jones C N, Knowles D M. Scr Mater, 2004; 51: 155
[23]
Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290
[24]
Fuchs G E. J Mater Eng Perform, 2002; 11: 19
[25]
Shi Q Y, Li X H, Zheng Y R, Xie G, Zhang J, Feng Q. Acta Metall Sin, 2012; 48: 1237 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强. 金属学报, 2012; 48: 1237)
[26]
Reed R C. The Superalloys: Fundamentals and Applications. Cambridge,UK: Cambridge University Press, 2006: 53
[27]
Kong Y H. PhD Dissertation, The University of Hong Kong, 2005
[28]
Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2014; A626: 406
[29]
Chen J Y, Feng Q, Cao L M, Sun Z Q. Mater Sci Eng, 2011; A528: 3791
[30]
Neumeier S, Pyczak F, Goken M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[31]
Rowland L J, Feng Q, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 697
[32]
Kablov E N, Petrushin N V. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 901
[33]
Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[34]
Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 737
[35]
Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[36]
Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 35
[37]
Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B eds., TMS 2009 Annual Meeting and Exhibition, San Francisco: Minerals, Metals & Materials Soc, 2009: 233
[38]
Heckl A, Neumeier S, G?ken M, Singer R. Mater Sci Eng, 2011; A528: 3435
[39]
Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[40]
Fleischmann E, Miller M K, Affeldt E, Glatzel U. Acta Mater, 2015; 87: 350
[41]
Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C. Acta Mater, 2010; 58: 931
[42]
Hu P P, Chen J Y, Feng Q, Chen Y H, Cao L M, Li X H. Chin J Nonferrous Met, 2011; 21: 332 (胡聘聘, 陈晶阳, 冯 强, 陈艳辉, 曹腊梅, 李相辉. 中国有色金属学报, 2011; 21: 332)
[43]
Hopgood A A, Martin J W. Mater Sci Eng, 1986; 82: 27
[44]
Fritzemeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 265
[45]
Wilson B C, Hickman J A, Fuchs G E. J Met, 2003; 55: 35
[46]
Kong Y H, Chen Q Z, Knowles D M. J Mater Sci, 2004; 39: 6993