Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1279-1287    DOI: 10.11900/0412.1961.2015.00434
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21
Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG(),Huibin XU
School of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article: 

Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG,Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21. Acta Metall Sin, 2015, 51(10): 1279-1287.

Download:  HTML  PDF(12250KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to the requirement of high-pressure turbine guide vane during service, the aim of this work is to design a single crystal Ni3Al-based alloy named IC21 with low density, low cost, and high strength which can be used as high-pressure turbine guide vane material. The mass fraction of the Re has been limited less than 1.5% on purpose. The single crystal bars of IC21 were prepared by high rate solidification method. The density of IC21 is 8.0 g/cm3 and the incipient melting temperature was identified by metallography. After standard heat treatment, the distribution of the g' precipitates is uniform with the average size of about 420 nm, and volume fraction of 80%. The tensile and yield strengths at 1100 ℃ are 490 and 470 MPa, respectively. Moreover, IC21 shows superior creep properties, the stress-rupture life at 1100 ℃,140 MPa is 170.5 h and at 1150 ℃,100 MPa still remains 110.0 h. The microstructure stability of IC21 alloy at 1080 ℃ for as long as 1000 h were evaluated. The results show that no precipitated phase exists during thermal exposure at 1080 ℃, which exhibits good stability. The oxidation kinetic curves of IC21 alloy follows a parabolic rate law in different oxidation stage during cycle oxidation for 100 h in air. IC21 alloy has a good high temperature oxidation resistance, the strengthening mechanism are attributed to high volume fraction of g' phase, large negative misfit and well-established interface networks.

Key words:  Ni3Al      IC21 single crystal alloy      low cost      low density      high temperature strength      high temperature oxidation resistance     
Fund: Supported by National Natural Science Foundation of China (No.51371014) and Joint Funds of National Natural Science Foundation of China (No.U1435207)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00434     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1279

Fig.1  Cross- (a) and longitudinal- (b) sectional BSE images of as-cast IC21 single crystal alloy and partially enlarged views of Fig.1a (c) and Fig.1b (d)
Fig.2  SEM images of IC21 single crystal alloy after different aging treatment[13]
(a) 1060 ℃, 2 h+870 ℃, 32 h (b) 1080 ℃, 2 h+870 ℃, 32 h
(c) 1100 ℃, 2 h+870 ℃, 32 h (d) 1120 ℃, 2 h+870 ℃, 32 h
Fig.3  SEM images of IC21 alloy after thermal exposure at 1080 ℃ for 50 h (a), 100 h (b), 300 h (c), 500 h (d), 800 h (e) and 1000 h (f)[13]
Temperature / ℃ sb / MPa sp0.2 / MPa d / % Φ / %
RT 812 784 25.2 22.2
886 834 15.2 16.9
760 1050 980 12.0 37.3
995 911 12.4 38.7
850 1017 954 51.2 40.2
937 889 73.2 46.5
980 690 670 41.5 39.0
685 650 55.0 49.5
1100 490 470 33.0 64.0
505 498 35.0 71.5
1150 350 330 47.0 78.0
350 330 44.0 74.5
Table 1  Tensile properties of IC21 single crystal alloy at various temperatures[13]
Fig.4  Influence of temperature on yield strength and elongation of CMSX-4 and IC21 single crystal alloys[21]
Fig.5  Dislocation networks of IC21 single crystal alloy formed during high temperature thermal exposure at 1100 ℃ for 1 h at low (a) and high (b) magnification, 10 h (c) and 100 (d) [13,27]
Temperature / ℃ Orientationdeviation / (°) Stress / MPa Life / h d / %
760 10 600 324.8 31.2
4 750 69.8 29.5
6 71.0 21.8
850 6 450 252.4 28.2
7 271.8 27.4
6 500 64.4 17.5
5 75.4 16.8
980 8 22 121.9 50.2
7 141.5 47.3
8 250 76.5 43.7
8 84.0 50.1
1100 10 140 170.5 12.1
8 159.2 6.7
1150 8 100 110.0 10.8
8 99.0 9.9
Table 2  Stress rupture properties of IC21 single crystal alloy at various load conditions[13]
Fig.6  Cyclic oxidation mass gain kinetic curves of IC21 single crystal alloy at 1100 ℃ (a) and 1150 ℃ (b)
Fig.7  Microstructure of complex thin-walled IC21 single crystal alloy (a) and enlarged views corresponding to areas A (b), B (c) and C (d) in Fig.7a
[1] Chen J G. Aerona Sci Technol, 1994; (5): 9 (陈金国. 航空科学技术, 1994; (5): 9)
[2] Kong X X. Aerona Sci Technol, 1994; (5): 21 (孔祥鑫. 航空科学技术, 1994; (5): 21)
[3] Sequeira C A C, Amaral L. Corros Prot Mater, 2013; 32(3): 75
[4] Zheng Y R, Wang X P, Dong J X, Han Y F. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Proc of 9th Int Symposium on Superalloys, Warrendale: TMS, 2000; 305
[5] Frazier D J, Whetstone J R, Harris K, Erickson G L, Schwer R E. High Temperature Materials for Power Engineering. Boston: Kluwer Academic Publishers, 1990: 1281
[6] Waudby P E, Benson J M, Stander C M, Pennefather R, McColvin G. Advances in Turbine Materials Design and Manufacturing. London: Institute of Materials, 1997: 322
[7] Quan D L, Liu S L, Li J H,?Liu G W. J Therm Sci, 2005; 14(1): 56
[8] Leontiev A I. J Heat Transfer, 1998; 121: 509
[9] Hartnett J P, Rohsenow W M. Handbook of Heat Transfer Applications. New York: McGraw-Hill Professional, 1985: 1
[10] Song J X, Xiao C B, Li S S, Han Y F. Acta Metall Sin, 2002; 38: 250 (宋尽霞, 肖程波, 李树索, 韩雅芳. 金属学报, 2002; 38: 250)
[11] Xiao C B, Han Y F, Li S S, Wang D G, Song J X, Li Q. Mater Lett, 2003; 57: 3843
[12] Ding R G, Ojo O A. Scr Mater, 2006; 54: 859
[13] Zhang H. PhD Dissertation, Beihang University, 2015 (张 恒. 北京航空航天大学博士学位论文, 2015)
[14] Sajjadi S A, Zebarjad S M, Guthrie R I L, Isac M. J Mater Process Technol, 2006; 175: 376
[15] Mulier L, Glatzel U, Feller K. Acta Metall Mater, 1992; 40: 1321
[16] Glatzedl U, Feller-Kniepmeier M. Scr Metall, 1989; 23: 1839
[17] Zhang J H, Yao X D, Zhang Z Y, Li Y A, Guan H R, Hu Z Q. Acta Metall Sin, 1994; 30: 453 (张静华, 姚向东, 张志亚, 李英敖, 管恒荣, 胡壮麒. 金属学报, 1994; 30: 453)
[18] Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2001; 25(4): 7 (任英磊, 金 涛, 管恒荣, 胡壮麒. 机械工程材料, 2001; 25(4): 7)
[19] Ning L K, Zheng Z, Jin T, Tang S, Liu E Z, Tong J, Yu Y S, Sun X F. Acta Metall Sin, 2014; 30: 1011 (宁礼奎, 郑 志, 金 涛, 唐 颂, 刘恩泽, 佟 健, 于永泗, 孙晓峰. 金属学报, 2014; 30: 1011)
[20] Wei L. Master Thesis, Beihang University, 2011 (魏 丽. 北京航空航天大学硕士学位论文, 2011)
[21] Sengupta A, Putatunda S K, Bartosiewicz L, Hangas J, Nailos P J, Peputapeck M, Alberts F E. J Mater Eng Perform, 1994; 3: 73
[22] Pollock T M, Argon A. Acta Metall Mater, 1992; 40: 1
[23] Zhang J X, Murakumo T, Koizumi Y, Harada H. J Mater Sci, 2003; 38: 4883
[24] Zhang J X, Wang J C, Harada H, Koizumi Y J. Acta Mater, 2005; 53: 4623
[25] Yang S, Zhang J, Luo Y S, Zhao Y S, Tang D Z, Cao G Q. Mater Sci Forum, 2013; 747: 777
[26] Feller K M, Link T. Metall Trans, 1989; 20A: 1233
[27] Liu L. PhD Dissertation, Beihang University, 2014 (刘 磊. 北京航空航天大学博士学位论文, 2014)
[28] Huang L, Sun X F, Guan H R, Hu Z Q. Surf Coat Technol, 2006; 200: 6863
[29] Ying W, Toshio N. Surf Coat Technol, 2007; 202; 140
[1] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[2] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[3] Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique[J]. 金属学报, 2017, 53(11): 1461-1468.
[4] LI Haizhao, ZHANG Ji. HIGH TEMPERATURE STRENGTH AND AMBIENT DUCTILITY DEPENDENCES ON Al CONTENTS OF HIGH Nb CONTAINING TiAl ALLOYS[J]. 金属学报, 2013, 49(11): 1423-1427.
[5] ZHOU Xiaowei SHEN Yifu GU Dongdong. MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION[J]. 金属学报, 2012, 48(8): 957-964.
[6] JIANG Liwu LI Shusuo QIU Zicheng HAN Yafang . EFFECTS OF WITHDRAWAL RATE ON MICROSTRUCTURE AND STRESS RUPTURE PROPERTIES OF A Ni3Al–BASED SINGLE CRYSTAL SUPERALLOY IC6SX[J]. 金属学报, 2009, 45(5): 547-552.
[7] . DEVELOPMENT OF A NEW HIGH STRENGTH AND GOOD HOT CORROSION RESISTANCE FOR LOW SEGREGATION SUPERALLOY DZ68[J]. 金属学报, 2007, 43(4): 422-426 .
No Suggested Reading articles found!