Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 957-964    DOI: 10.3724/SP.J.1037.2012.00298
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION
ZHOU Xiaowei, SHEN Yifu, GU Dongdong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article: 

ZHOU Xiaowei SHEN Yifu GU Dongdong. MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION. Acta Metall Sin, 2012, 48(8): 957-964.

Download:  PDF(2750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ni–CeO2 nanocomposite coatings were successfully electrodeposited from a standard Watts–nickel solution by a pulsed current (PC) method under ultrasonic field (UF). The surface morphology, microstructural evolution and phase composition of both pure Ni and Ni–CeO2 coatings were characterized using E–SEM, TEM and XRD, respectively. The curves of oxidation kinetics and DSC analysis were employed to evaluate high temperature oxidation resistance and thermal stability of these coatings. The experimental results indicate that the effect of acoustic streaming produced by ultrasonic field can effectively promote the uniform distribution of CeO2 nanoparticles in electrolyte. The adding of 20 g/L CeO2 can make the Ni grains refined in the Ni–CeO2 coating. During annealing at 873 K for 2 h, a sort of precipitated phase named NiCe2O4 is formed along the edge of crack propagation in this coating to bond or heal up the existing grain–boundaries, and to make them far from the initiation and extension of thermal cracks. A large volume fraction of grain–boundaries act as diffusion channels to make NiCe2O4 precipitated and form a continuous and compact layer enriched with Ce alloying element leading to inhibition of mutual diffusion between O and Ni atoms in this layer and reduction of the oxidation rate. According to different endothermic peaks of DSC curves, the activation energy of crystallization calculated by Kissinger equation displays the better thermal stability of 243.3 kJ/mol for Ni grains in the Ni–CeO2 coating than 159.2 kJ/mol for pure Ni coating, and the corresponding endothermic peak is about 130 K higher than that of the latter.
Key words:  thermal stability      high temperature oxidation resistance      double–pulsed electro deposition      activation energy       Ni–CeO2     
Received:  24 May 2012     
ZTFLH: 

TG172.5

 
  TG153.1

 
Fund: 

Supported by Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX12–0151)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00298     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/957

[1] Li L, Huang S G, Xu L P, Biest O V D, Vleugels J. J Mater Sci Technol, 2001; 17: 529

[2] Abbas M I, Ibrahim K, Wu Z Y, Zhang J, Liu F Q, Qian H J. Acta Metall Sin (Engl Lett), 2001; 14: 539

[3] Ibrahim K, Wu Z Y, Zhang J, Abbas M I, Liu F Q, Qian H J. Acta Metall Sin (Engl Lett), 2001; 14: 511

[4] Sen R J, Bhattacharya S, Das S, Das K. J Alloys Compd, 2010; 489: 650

[5] Wang H X, Li Y G, Chu C L. Rare Met Mater Eng, 2011; 40: 316

 (王红星, 李迎光, 储成林. 稀有金属材料与工程, 2011; 40: 316)

[6] Qi E L, Man L Y, Wang S H, Wang J Q. Chin J Mater Res, 2011; 25: 219

(齐恩磊, 满丽莹, 王孙昊, 王介强. 材料研究学报, 2011; 25: 219)

[7] Yang Y L, Shen Y F, Chen J G, Wang Y D. Acta Metall Sin, 2007; 43: 883

(杨艳玲, 申勇峰, 陈进耿, 王沿东. 金属学报, 2007; 43: 883)

[8] Jin H M, Jiang S H, Zhang L N. J Rare Earths, 2009; 27: 109

[9] Ning Z H, He Y D. Acta Metall Sin, 2008; 44: 751

(宁朝辉, 何业东. 金属学报, 2008; 44: 751)

[10] Wang Y, Guo J B, Yu H Y, Li H Q, Sun D B. Chin J Nonferrous Met, 2007; 17: 1481

(王玉, 郭金彪, 俞宏英, 李辉勤, 孙冬柏. 中国有色金属学报, 2007; 17: 1481)

[11] Shen K, Wang M P, Guo M X, Li S M. Acta Metall Sin, 2009; 45: 597

(申坤, 汪明朴, 郭明星, 李树梅. 金属学报, 2009; 45: 597)

[12] Lu X D, Tian S G, Sun Z D. Corros Sci Prot Technol, 2011; 23: 298

(卢旭东, 田素贵, 孙振东. 腐蚀科学与防护技术, 2011; 23: 298)

[13] Prasad P, Vasudavan R, Sesdri S K. J Mater Sci Lett, 1992; 1: 1424

[14] Yu H, Dai P G. Heat Treat Met, 2005; 30: 16

(喻辉, 戴品强. 金属热处理, 2005; 30: 16)

[15] Klement U, Elsherik A M, Aust K T. Mater Sci Eng, 1995; 203: 177

[16] Xue Y J, Liu H B, Lan M M , Ku X C, Li J S. Tran Nonferrous Met Soc China, 2009; 19: 1599

[17] Zhang L, Schubert W D, Chen S, Hang C F, Huang B Y. Mater Sci Eng, 2004, A384: 395

[18] Gu D D, Shen Y F. Acta Metall Sin, 2007; 43: 968

(顾冬冬, 沈以赴. 金属学报, 2007; 43: 968)

[19] Zhou XW, Shen Y F, Zheng Y Y, Jin H M. J Rare Earths, 2011; 29: 883

[20] Sen R J, Das S, Das K. Mater Res Bull, 2012; 47: 478

[21] Prazybyldki K. J Electrochem Soc, 1987; 134: 3027

[22] Huang S G, Li L, Vleugels J, Biest O V D, Wang P L. J Mater Sci Technol, 2004; 20: 75

[23] Xue Y J, Liu H B, Lan M M, Cu X C, Li J S. Chin J Nonferrous Met, 2010; 20: 1599

(薛玉君, 刘红彬, 兰明明, 库祥臣, 李济顺. 中国有色金属学报, 2010; 20: 1599)

[24] Wang N, Wang Z R, Aust K T. Acta Mater, 1997; 45: 1655

[25] Qu N S, Zhu D, Chan K C. Scr Mater, 2006; 54: 1421

[26] Murugesan M, Obara H, Nakagawa Y, Yamasaki H, Kosaka S. J Cryst Growth, 2007; 304: 118

[27] Huang S G, Li L, Biest O V D, Vleugels J, Wang P L. J Mater Sci Technol, 2002; 18: 325

[28] Yong J H, Teng C W Z, Zhuang S Q Y L. Powder Metall, 1983; 30: 112

(永井宏, 藤川武志, 庄司启一郎. 粉体および粉末冶金, 1983; 30: 112)

[29] Ma X Q, Li T P. Corros Sci Prot Technol, 1993; 5: 255

(马信清, 李铁藩. 腐蚀科学与防护技术, 1993; 5: 255)

[30] Luthra K L, Briant C L. Oxid Met, 1986; 26: 397

[31] Wang N, Wang Z R, Aust K T. Acta Mater, 1997; 45: 1655

[32] Kissinger H. Anal Chem, 1957; 29: 1672

[33] Zhong Y H, Dai P Q, Dai C F. J Mater Eng, 2009; 4: 52

(钟远辉, 戴品强, 戴春福. 材料工程, 2009; 4: 52)

[34] Huang S G, Li L, Vleugels J, Biest O V D, Wang P L. J Mater Sci Technol, 2004; 20: 75

[35] Mihalache V, Pasuk I. Acta Mater, 2011; 59: 4875

[36] Xiong J, Chen Y, Qiu Y, Tao B, Qiu W F, Cui X, Li Y R. J Mater Sci Technol, 2007; 23: 457

[37] Wang H Y, Zuo D W, Wang M D, Shao J B. Acta Metall Sin, 2009; 45: 971

(王宏宇, 左敦稳, 王明娣, 邵建兵. 金属学报, 2009; 45: 971)
[1] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[5] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[6] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[9] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[10] YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. 金属学报, 2015, 51(4): 465-472.
[11] Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG,Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21[J]. 金属学报, 2015, 51(10): 1279-1287.
[12] LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL[J]. 金属学报, 2013, 49(6): 707-716.
[13] ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER[J]. 金属学报, 2013, 49(12): 1611-1616.
[14] FANG Lu,DING Xianfei, ZHANG Laiqi, HAO Guojian, LIN Junpin. MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb-TiAl ALLOY AFTER LONG-TERM THERMAL CYCLING[J]. 金属学报, 2013, 49(11): 1416-1422.
[15] ZHANG Yanpo, REN Ding, LIN Liwei,YANG Bin, WANG Shanling,LIU Bo1), XU Kewei. CONTROLLED REACTION ON INTERFACE OF Cu/Cu(Ge, Zr)/SiO2/Si MULTILAYER FILM AND ITS THERMAL STABILITY[J]. 金属学报, 2013, 49(10): 1264-1268.
No Suggested Reading articles found!