Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1095-1101    DOI: 10.11900/0412.1961.2013.00774
Current Issue | Archive | Adv Search |
Fe THIN FILMS GROWN ON SURFACE OF SrFe12O19 BY MOCVD METHOD AND ITS ABSORBING PROPERTIES
LIU Yuan, LIU Xiangxuan, WANG Xuanjun, CHEN Xin
No.603 Faculty, Xi'an Research Institute of High Technology, Xi'an 710025
Cite this article: 

LIU Yuan, LIU Xiangxuan, WANG Xuanjun, CHEN Xin. Fe THIN FILMS GROWN ON SURFACE OF SrFe12O19 BY MOCVD METHOD AND ITS ABSORBING PROPERTIES. Acta Metall Sin, 2014, 50(9): 1095-1101.

Download:  HTML  PDF(3215KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nowadays, more and more researchers pay attention to the microwave absorbing materials with the increase of electromagnetic pollution and the development of stealth technology for military platforms. Traditional microwave absorbers, such as ferrite, metal powder, conductive magnetic fibers, magnetic flake powder, and nanoparticles and so on, are facing some common problems such as large specific gravity, narrow absorption bandwidth, large match thickness and poor absorption performance. Composites with core-shell structures are becoming promising microwave absorbing material because such structure can exhibit magnetic and dielectric characteristics through the proper selection of core and shell materials. Thus, Fe(CO)5 deposition on the SrFe12O19 surface has been considered for the fabrication of a new composite that possesses the advantages of these two materials. This new composite might also obtain remarkable microwave absorption through thin layer absorbers in the entire 2~18 GHz frequency range. The Fe-SrFe12O19 composites with core-shell structures were prepared by metal organic chemical vapor deposition (MOCVD) using the SrFe12O19 and iron pentacarbonyl [Fe(CO)5] as the precursors. XRD, SEM, EDS and a vector network analyzer were used to characterize the structure and electromagnetic properties of the samples. The structure and morphology analyses show that the composites have complete core-shell structures with SrFe12O19 as core and Fe layers as shell. Fe nanoparticles were uniformly deposited on the surface of SrFe12O19 with thickness of about 0.5 mm at the reaction temperature of 180 ℃ with N2 flow rate of 30 mL/min for 30 min. Simulation studies show that SrFe12O19 electromagnetic properties changed significantly and the absorbing properties got evidently improvement after Fe deposited on its surface. The samples prepared with deposition time of 30 min have the best absorbing properties. A reflection loss (RL) value exceeding -10 dB in the range of 6.8~18.0 GHz frequency was obtained by selecting an appropriate thickness of the absorber layer from 1.5 to 3.0 mm. Moreover, a minimum RL of -21.2 dB at was obtained for a 2.0 mm thick layer. Fe-deposited SrFe12O19 by MOCVD can significantly improve the electromagnetic properties of SrFe12O19 and Fe-SrFe12O19 composites could be used as an effective microwave absorption material.

Key words:  carbonyl iron      MOCVD      electromagnetic      microwave absorption     
ZTFLH:  TB383  
  TM 277  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00774     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1095

Fig.1  XRD spectra of Fe-SrFe12O19 after different reaction times
Fig.2  SEM images of SrFe12O19 (a) and Fe-SrFe12O19 after reaction times of 10 min (b), 30 min (c) and 60 min (d)
Fig.3  SEM image of Fe-SrFe12O19 (a) and the EDS analysis (b)
Fig.4  Real (a, c) and imaginary (b, d) parts of the complex permittivity (a, b) and permeability (c, d) of SrFe12O19 and Fe-SrFe12O19 (e′—real part of permittivity, e′′—imaginary part of permittivity, m′—real part of permeability, m′′—imaginary part of permeability)
Fig.5  Values of f- -1(m')-2m'' versus frequency of Fe-SrFe12O19 (f—frequency)
  
Fig.7  Three-dimensional microwave absorbing renderings of SrFe12O19 (a) and Fe-SrFe12O19 (b)
Fig.8  Reflection loss of Fe-SrFe12O19 with thickness of 1.5~3.0 mm (a) and comparison of measured and calculated reflection loss for Fe-SrFe12O19 (b)
[1] Huang Y B, Qian J S, Zhang J Y. J Chin Coal Soc, 2010; 35: 135
(黄煜镔, 钱觉时, 张建业. 煤炭学报, 2010; 35: 135)
[2] Hirata A, Morita M, Shiozawa T. IEEE Trans Electromagn, 2003; 45C: 109
[3] Liu Y, Liu X X, Wang X J, Zhang Z Y, Li R, Guo L. Chin J Nonferrous Met, 2013; 23: 168
(刘 渊, 刘祥萱, 王煊军, 张泽洋, 李 茸, 郭 磊. 中国有色金属学报, 2013; 23: 168)
 Zhou J, Wang W, Sun Z G, Gong J G. Acta Metall Sin, 2010; 46: 967
(周 静, 王 维, 孙志刚, 宫建国. 金属学报, 2010; 46: 967)
[5] Liu Y, Liu X X, Wang X J, Chen X. J Chin Ceram Soc, 2013; 41: 755
(刘 渊, 刘祥萱, 王煊军, 陈 鑫. 硅酸盐学报, 2013; 41: 755)
[6] Wang Y F, Li Q L, Zhang C R, Jing H X. J Alloys Compd, 2009; 467: 284
[7] Yao X B, Hu G G, Yin P, Fang Q Q, Lv Q R. Funct Mater, 2002; 33: 633
(姚学标, 胡国光, 尹 萍, 方庆清, 吕庆荣. 功能材料, 2002; 33: 633)
[8] Jing H X, Li Q L, Ye Y, Yang X F. Acta Mater Comp Sin, 2013; 30: 130
(景红霞, 李巧玲, 叶 云, 杨晓峰. 复合材料学报, 2013; 30: 130)
[9] Liu Y, Liu X X, Wang X J. J Alloys Compd, 2014; 584: 249
[10] Tong G X, Gong J G, Zhang W Y, Zhang W, Wang W, Dong D M. Acta Metall Sin, 2008; 44: 1001
(童国秀, 宫建国, 张五一, 张 巍, 王 维, 董德明. 金属学报, 2008; 44: 1001)
[11] Liu Y, Liu X X, Wang X J, Wen W. Chin Phys Lett, 2014; 31: 047702
[12] Cheng Y L, Dai J M, Wu Y P. J Magn Magn Mater, 2010; 32: 97
[13] Pan X F, Mu G H, Shen H G, Gu M Y. Appl Surf Sci, 2007; 253: 4119
[14] Pan X F, Shen H G, Qiu J X, Gu M Y. Mater Chem Phys, 2007; 101: 505
[15] Pan X F, Shen H G, Qiu J X, Gu M Y. J Mater Sci, 2007; 42: 2086
[16] Zhang Z Y, Liu X X, Wang X J, Wu Y P, Liu Y. J Magn Magn Mater, 2012; 324: 2177
[17] Zhang Z Y, Liu X X, Wang X J, Wu Y P, Rong L. J Alloys Compd, 2012; 525: 114
[18] Zhang S Y, Cao Q X. Mater Sci Eng, 2012; B177: 678
[19] Liu Y, Liu X X, Chen X, Wang X J. J Inorg Mater, 2013; 28: 1328
(刘 渊, 刘祥萱, 陈 鑫, 王煊军. 无机材料学报, 2013; 28: 1328)
[20] Yang Y, Xu C L, Xia Y X, Wang T, Li F S. J Alloys Compd, 2010; 493: 549
[21] Zhang B S, Feng Y, Xiong J, Yang Y, Lu H X. IEEE Trans Magn, 2006; 42: 1778
[22] Naito Y, Suetake K. IEEE Trans Microwave Theory Technol, 1971; 19: 65
[23] Meshram M R, Agrawal N K, Sinha B, Misra P S. J Magn Magn Mater, 2004; 271: 207
[24] Maeda T, Sugimoto S, Kagotani T, Tezuka N, Inomata K. J Magn Magn Mater, 2004; 281: 195
[1] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[3] ZHENG Jincan, LIU Runcong, WANG Xiaodong. Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process[J]. 金属学报, 2020, 56(7): 929-936.
[4] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[5] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[6] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[7] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[8] Ming HE, Xianliang LI, Qingwei WANG, Lianyu WANG, Qiang WANG. Influence of Magnetic Shielding on the Power Loss of Induction Heating Power Supply in the Electro-magnetic Induction Controlled Automated Steel Teeming System[J]. 金属学报, 2019, 55(2): 249-257.
[9] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[10] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[11] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[12] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[13] Shiping WU, Rujia WANG, Wei CHEN, Guixin DAI. Progress on Numerical Simulation of Vibration in the Metal Solidification[J]. 金属学报, 2018, 54(2): 247-264.
[14] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[15] Yuqiu CHEN, Yapei ZU, Jun GONG, Cao SUN, Chen WANG. Effect of Al Film on the Electromagnetic Properties of Glass Fiber Reinforced Resin Matrix Composite[J]. 金属学报, 2017, 53(11): 1511-1520.
No Suggested Reading articles found!