Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 11-18    DOI:
Original Articles Current Issue | Archive | Adv Search |
EFFECT OF GRAIN BOUNDARY ANGLE ON STRESS RUPTURE PROPERTIES OF A Ni-BASED BICRYSTAL SUPERALLOY
CAO Liang, ZHOU Yizhou, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  HTML  PDF(16445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bicrystal slabs with different grain boundary angles were cast to study the effect of varied grain boundary angle on stress rupture properties of a Ni-based bicrystal superalloy. It was found that the stress rupture lives of single crystal specimens were superior to those with grain boundaries. With the increase of grain boundary angle, the stress rupture life was decreased and the fracture type was transferred from trans-granular to inter-granular fracture. The reduced rupture properties was attributed to the inhabitation of grain boundary on slip deformation. With the rise of temperatures, the effect of grain boundaries on rupture properties was enhanced and the critical value of grain boundary angle from trans-granular to inter-granular fracture was decreased. Inter-granular fracture occurred from 12° grain boundary in the rupture test of 871 ℃ and 552 MPa, and it occurred from 4.5° grain boundary in the rupture test of 1100 ℃ and 120 MPa. Since the grain boundary became weaker at higher temperature, the angle of low-angle boundary in single crystal superalloys should be controlled strictly.

Key words:  Ni-based superalloy      grain boundary angle      stress rupture property     
Received:  24 June 2013     
ZTFLH:  TG146  
Corresponding Authors:  ZHOU Yizhou, professor, Tel: (024)83978068, E-mail: yzzhou@imr.ac.cn   

Cite this article: 

CAO Liang,ZHOU Yizhou,JIN Tao,SUN Xiaofeng. EFFECT OF GRAIN BOUNDARY ANGLE ON STRESS RUPTURE PROPERTIES OF A Ni-BASED BICRYSTAL SUPERALLOY. Acta Metall Sin, 2014, 50(1): 11-18.

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/11

[1] Jia Y X, Jin T, Liu J L, Sun X F, Hu Z Q. Acta Metall Sin, 2009; 45: 1364
(贾玉贤, 金 涛, 刘金来, 孙晓峰, 胡壮麒. 金属学报, 2009; 45: 1364)
[2] Zhou Y Z, Jin T, Sun X F. Acta Metall Sin, 2010; 46: 1327
(周亦胄, 金 涛, 孙晓峰. 金属学报, 2010; 46: 1327)
[3] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Champion, PA: TMS, 1992: 125
[4] Bussac A, Gandin C. Mater Sci Eng, 1997; A237: 35
[5] Tamaki H, Yoshinari A, Okayama A, Nakamura S, Kageyama K, Sato K, Ohno T. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000. Reno, NV: TMS, 2000: 757
[6] Chandra N, Dang P. J Mater Sci, 1999; 34: 655
[7] Gottstein G, Shvindlerman L S. Scr Metall Mater, 1992; 27: 1515
[8] Tavakkoli M M, Abbasi S M. Mater Des, 2013; 46: 573
[9] Zheng L, Xu T D, Deng Q, Dong J X. Mater Lett, 2008; 62: 54
[10] Ping D H, Gu Y F, Cui C Y, Harada H. Mater Sci Eng, 2007; A456: 99
[11] Ross E W, O′hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollok T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 19
[12] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Reno, NV: TMS, 2000: 295
[13] Nitta H, IijimaY, Tanaka K, Yamazaki Y, Lee CG, Matsuzaki T, Watanabe T. Mater Sci Eng, 2004; A382: 250
[14] Zhou Y Z. Scr Mater, 2011; 65: 281
[15] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631
[16] Zhou Y Z, Green N R. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Champion, PA: TMS, 2008: 317
[17] Zhou Y Z, Volek A. Scr Mater, 2006; 54: 2169
[18] Peralta P, Schober A, Laird C. Mater Sci Eng, 1993; A169: 43
[19] Wang G J. Central Iron Steel Res Inst Tech Bull, 1986; 6(4): 25
(王桂金. 钢铁研究学报, 1986; 6(4): 25)
[20] Liu L R. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
(刘丽荣. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[21] Maclachlan D W, Knowles D M. Mater Sci Eng, 2001; A302: 275
[22] Savitsky E M, translated by Duan Z. Effect of Temperature on the Metal and Alloy Mechanical Properties. Beijing: China Industry Press, 1965: 33
(Савицкий E M著, 段 中 译. 温度对金属及合金机械性能的影响. 北京: 中国工业出版社, 1965: 33)
[23] Friedel J, translated by Wang Y. Dislocations. Beijing: Science Press, 1980: 215
(Friedel J 著, 王 煜 译. 位错. 北京: 科学出版社, 1980: 215)
[1] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[2] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[3] Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. 金属学报, 2018, 54(4): 566-574.
[4] Songsong HU,Lin LIU,Qiangwei CUI,Taiwen HUANG,Jun ZHANG,Hengzhi FU. CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2016, 52(8): 897-904.
[5] Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY[J]. 金属学报, 2016, 52(7): 851-858.
[6] Wen SUN,Xuezhi QIN,Jianting GUO,Langhong LOU,Lanzhang ZHOU. DEGENERATION PROCESS AND MECHANISM OF PRIMARY MC CARBIDES IN A CAST Ni-BASED SUPERALLOY[J]. 金属学报, 2016, 52(4): 455-462.
[7] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[8] Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT[J]. 金属学报, 2015, 51(8): 943-950.
[9] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
[10] Yunsong ZHAO,Jian ZHANG,Yushi LUO,Dingzhong TANG,Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11[J]. 金属学报, 2015, 51(10): 1261-1272.
[11] Beijiang ZHANG,Guangpu ZHAO,Wenyun ZHANG,Shuo HUANG,Shifu CHEN. INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES[J]. 金属学报, 2015, 51(10): 1227-1234.
[12] SUN Wen, QIN Xuezhi, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2015, 51(1): 67-76.
[13] LIU Quan, YANG Yingfei, BAO Zebin, ZHU Shenglong, WANG Fuhui. OXIDATION PROPERTY AND FAILURE MECHANISM OF A SINGLE PHASE PtAl2 COATING[J]. 金属学报, 2014, 50(9): 1102-1108.
[14] YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi. MICROSTRUCTURE AND MECHANICAL PROPERTIESOF A Ni-BASED SUPERALLOY WITH REFINED GRAINS[J]. 金属学报, 2014, 50(7): 839-844.
[15] XIONG Jichun , LI Jiarong , SUN Fengli , LIU Shizhong , HAN Mei . MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6[J]. 金属学报, 2014, 50(6): 737-743.
No Suggested Reading articles found!