Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1467-1472    DOI: 10.3724/SP.J.1037.2013.00539
Current Issue | Archive | Adv Search |
EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY
ZHOU Xuefeng 1,2), CHEN Guang 1), YAN Shitan 1), ZHENG Gong 1), LI Pei 1), CHEN Feng 1)
1) Engineering Research Center of Materials Behavior and Design, Ministry of Education,Nanjing University of Science and Technology, Nanjing 210094
2) School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500
Cite this article: 

ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2013, 49(11): 1467-1472.

Download:  PDF(1574KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal superalloy has not only high temperature creep and fatigue resistance, but also excellent oxidation and corrosion resistance,which becomes a main selection of the advanced aero engine turbine blades. In order to enhance high temperature properties, Re is added into the superalloy, however, high density and high cost of the Re, especially promote the precipitation of harmful phases at high service temperature, which limit the use of Re. Therefore, how to reduce or even abolish the use of Re in the single crystal superalloy is the main trend to develop a new generation turbine engine material. A new Re-free Ni-based single crystal superalloy, 7.5Cr-5Co-2Mo-6.1Al-8W-6.5Ta-0.15Hf-0.05C-0.004B-0.015Y (mass fraction, %), Ni balance, has been designed by using the average electron vacancy number theory and the d-electrons concept. The microstructures of the as-cast, solution and aging treated specimens were observed by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy. The mechanical behavior of the fully heat treated single crystal superalloy and the appearance of fracture at 760℃ were studied. The calculation results indicate that the microstructure of the designed alloy is stable and the main performance criteria, such as Bot (the bond order between alloying elements and Ni atoms),Tγ′solvus (γ′ solvus temperature),P (the parameter which predicts the merit of the composition), etc.,are comparable to those of the second generation of the Ni-based single crystal superalloy.The experimental results indicate that W and Mo enriched in the dendrite cores,while Al and Ta enriched in the interdendritic region. The size and volume fraction of γ′ phase in the dendrite cores is smaller than that in the interdendritic region.After solution heat treatment at 1300℃, 3 h, air cooling,γ/γ′ eutectics are dissolved and composition segregation is significantly improved. After fully heat treatment at 1100℃, 4 h,air cooling and 870℃, 24 h, air cooling, γ′ phase with cube-shaped distributes in theγmatrix channels uniformly, whose ultimate tensile strength at 760℃ is 1009 MPa, comparable to the second generation of Re-containing Ni-based single crystal superalloy considerably.

Key words:  Ni-based single crystal superalloy      composition design      microstructure characteristics, tensile property     
Received:  30 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00539     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1467

[1] Ryokichi H, Akira Y, Takamasa K, Yoshinori M, Masahiko M. In: Green K A,Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds.,Superalloys 2004, Warrendale, PA: TMS, 2004: 53

[2] Tresa M P, Sammy T.  J Propul Power, 2006; 22: 361
[3] Cetel A D, Duhl D N. In: Reichman S, Duhl D N, Maurer G, Antolovich S,Lund C, eds.,  Superalloys 1988, Warrendale, PA: TMS, 1988: 235
[4] Hu Z Q, Liu L R, Jin T, Sun X F.  Aeroengine, 2005; 31(3): 1
(胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[5] Reed R C, Tao T, Warnken N.  Acta Mater, 2009; 57: 5898
[6] Rae C M F, Reed R C.  Acta Mater, 2001; 49: 4113
[7] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, ReedR C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S,Schirra J J, eds.,  Superalloys 2000, Warrendale, PA: TMS, 2000: 767
[8] Caldwell E, Fela F, Fuchs G.  JOM, 2004; 56(9): 44
[9] Yeh A C, Sato A , Kobayashi T, Harada H.  Mater Sci Eng, 2008; A490: 445
[10] Tian S G, Wang M G, Li T, Qian B J, Xie J.  Mater Sci Eng, 2010; A527: 5444
[11] Hobbs R A, Zhang L, Rae C M F, Tin S.  Metall Mater Trans, 2008; 39A: 1014
[12] Yukawa N, Morinaga M, Murata Y, Ezakin H, Inoue S. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C, eds.,  Superallovs 1988, Warrendale,PA: TMS, 1988: 225
[13] Murata Y, Miyazaki S, Morinaga M, Hashizume R. In: Kissinger R D,Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Warrendale, PA: TMS, 1996: 61
[14] Zhang J S, Hu Z Q, Murata Y, Morinaga M, Yukawa N.  Met Trans, 1993; 24A: 2443
[15] Morinaga M, Yukawa N, Adachi H.  J Phys Soc Jpn, 1984; 55: 653
[16] Morinaga M, Yuhwa N, Ezaki H, Adachi H.  Philos Mag, 1985; 51A: 223
[17] Sabo G P, Stickler R.  Phys Status Solidi, 1969; 35B(1): 11
[18] Barrows R G, Newkirk J B.  Metall Trans, 1972; 3A: 2889
[19] Wallace W.  Met Sci, 1975; 9: 547
[20] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M,Olson S, Schirra J J, eds.,  Superalloys 2000, Warrendale, PA: TMS, 2000: 737
[21] Rae C.  Mater Sci Technol, 2009; 25: 479
[22] Duhl D N, Cetel A D.  US Pat, 4719080, 1988
[23] Carroll L J, O'Hara K S.  US Pat, WO2009032578A1, 2009
[24] Wukusick C S, Buchakjian L.  UK Pat, GB 2235697, 1991
[25] Dwaine L K.  US Pat, 4476091, 1984
[26] Hata S, Kimura K, Gao H Y,Matsumura S, Doi M, Moritani T, Barnard J S,Tong J R, Sharp J H, Midgley P A.  Adv Mater, 2008; 20: 1905
[27] Doi M, Miki D, Moritani T, Kozakai T. In: Green K A, Pollock T M, Harada H,Howson T E, Reed R C, Schirra J J, Walston S, eds.,  Superalloys 2004, Warrendale,PA: TMS, 2004: 109
[28] Eridon J M, Harris K, Sikkenga S L.  US Pat, 5443789, 1995
[29] Wukusick C S, Buchakjian L.  US Pat, 6074602, 2000
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[3] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[4] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[5] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[6] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[7] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[8] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[9] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[10] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[11] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
[12] Sheng PU,Guang XIE,Li WANG,Zhiyi PAN,Langhong LOU. EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2016, 52(5): 538-548.
[13] Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. 金属学报, 2016, 52(5): 549-560.
[14] PU Sheng, XIE Guang, ZHENG Wei, WANG Dong, LU Yuzhang, LOU Langhong, FENG Qiang. EFFECT OF W AND Re ON DEFORMATION AND RECRYSTALLIZATION OF SOLUTION HEAT TREATED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2015, 51(2): 239-248.
[15] Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. 金属学报, 2015, 51(12): 1472-1480.
No Suggested Reading articles found!