Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1339-1346    DOI: 10.3724/SP.J.1037.2013.00470
Current Issue | Archive | Adv Search |
DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGHTEMPERATURE DEFORMATION PROCESS
XU Wenchen, SHAN Debin, ZHANG Hao
School of Materials Science and Engineering, Harbin Institute of Technogloy, Harbin 150001
Cite this article: 

XU Wenchen, SHAN Debin, ZHANG Hao. DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGHTEMPERATURE DEFORMATION PROCESS. Acta Metall Sin, 2013, 49(11): 1339-1346.

Download:  PDF(3030KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

γ-TiAl base alloys are promising high-temperature materials for aviation and aerospace applications due to their low density, exceptional high-temperature strength and good oxidation resistance. However, low ductility and poor hot workability limit the use of such alloys. The introduction of β phase appears to be effective to improve the hot workability of TiAl alloys, while the influence of β phase on hot deformation behavior of TiAl alloy has been rarely investigated until now. In this work, high-temperature compression experiments of β phase containing TiAl alloy (Ti-42Al-9V-0.3Y) were conducted on a Gleeble-1500 thermal simulation machine at 1000—1200℃ and strain rates of 0.001—1.0 s-1. The hot deformation behavior of the TiAl alloy was investigated and the discontinuous yielding mechanism was analyzed. The results show that the main deformation softening mechanism was the dynamic recovery (DRV) of β phase and dynamic recrystallization (DRX) of γ phase. The discontinuous yielding behavior was closely related to the DRV in β phase and the multiplication of the superdislocation with Burgers vector $\bm b=1/2〈112〉 in γ phase. The established dislocation dynamics model based on the Orowan equationin the present work could reasonably explain the causes for the discontinuous yielding phenomenon, indicating that the rapid increase of mobile dislocation density and small dislocation motion velocity sensitivity m* could induce the discontinuous yielding of the TiAl alloy. In addition, the fluctuating yielding behavior was attributed to the interaction effect of dislocation slip and twin at lower temperatures of 1100—-1150℃ and higher strain rate of 1 s-1.

Key words:  TiAl alloy      discontinuous yielding      dynamic softening      superdislocation      Orowan equation     
Received:  02 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00470     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1339

[1] Hu D.  Intermetallics, 2001; 9: 1037

[2] Das G, Kestler H, Clemens H, Bartolotta P A.  J Met, 2004; 56(11): 42
[3] Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, Chen G L.J Alloys Compd, 2006; 414: 175
[4] Vanderschueren D, Nobuki M, Nakamura M.  Scr Metall Mater, 1993; 28: 605
[5] Tetsui T, Kobayashi T, Harada H.  Mater Sci Eng, 2012; A552: 345
[6] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D,Kremmer S, Guther V, Smarsly W.  Intermetallics, 2008; 16: 827
[7] Niu H Z, Chen Y Y, Xiao S L, Xu L J.  Intermetallics, 2012; 31: 225
[8] Brenner S S.  J Appl Phys, 1957; 28: 1023
[9] Hahn G T.  Acta Metall, 1962; 10: 727
[10] Varin R A, Mazurek B, Himbeault D.  Mater Sci Eng, 1987; 10: 109
[11] Kurzydlowski K J.  Scr Metall Mater, 1992; 1: 283
[12] Li L X, Lou Y, Yang L B, Peng D S, Rao K P.  Mater Des, 2002; 23: 451
[13] Jia W J, Zeng W D, Zhou Y G, Liu J R, Wang Q J.  Mater Sci Eng, 2011; A528: 406
[14] Jonas J J, Heritier B, Luton M J.  Metall Trans, 1979; 10A: 611
[15] Vijayshankar M N, Ankem S. In: Froes F H, Caplan I eds.,Proc Titanium'92: Science and Technology, Warrendale: TMS, 1993: 1733
[16] Ankem S, Shyue J G, Vijayshankar M N, Arsenault R J.  Mater Sci Eng, 1989; A111: 51
[17] Besag F M C, Smallman R E.  Acta Metall, 1970; 18: 429
[18] Lai Y J, Zeng W D, Zhang C, Zhou J H, Wang X Y, Yu H Q, Zhou Y G.Mech Sci Technol Aerosp Eng, 2007; 26: 1183
(赖运金, 曾卫东, 张弛, 周建华, 王晓英, 俞汉清, 周义刚. 机械科学与技术, 2007; 26: 1183)
[19] Philippart I, Rack H J.  Mater Sci Eng, 1998; A254: 253
[20] Yamaguchi M, Umakoshi Y.  Prog Mater Sci, 1990; 34(1): 1
[21] Apple F, Wagner R.  Mater Sci Eng, 1998; R22: 187
[22] Haasen P.  Dislocation Dynamics. New York: McGraw—Hill Book Company, 1968: 701
[23] Yonenaga I, Sumino K.  J Appl Phys, 1989; 65: 85
[24] Yang D Z.  Dislocation and Strengthening Mechanism of Metals. Harbin: Harbin Institute of Technology Press, 1990: 131
(杨德庄. 位错与金属强化机制. 哈尔滨: 哈尔滨工业大学出版社, 1990: 131)
[25] Zhao J S.  Fundamentals of Dislocation Theory. Beijing: National Defense Industry Press, 1989: 125
(赵敬世. 位错理论基础. 北京: 国防工业出版社, 1989: 125)
[26] Wang Z J, Qiang H F, Wang X R.  Chin J Nonferrous Met, 2012; 22: 1904
(王哲君, 强洪夫, 王学仁. 中国有色金属学报, 2012; 22: 1904)
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[3] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[4] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[8] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[9] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[10] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[11] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[12] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[14] Gang WANG,Lei XU,Yuyou CUI,Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. 金属学报, 2016, 52(9): 1079-1088.
[15] Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY[J]. 金属学报, 2015, 51(7): 859-865.
No Suggested Reading articles found!