Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1264-1268    DOI: 0.3724/SP.J.1037.2013.00284
Current Issue | Archive | Adv Search |
CONTROLLED REACTION ON INTERFACE OF Cu/Cu(Ge, Zr)/SiO2/Si MULTILAYER FILM AND ITS THERMAL STABILITY
ZHANG Yanpo1), REN Ding1), LIN Liwei1),YANG Bin1), WANG Shanling2),LIU Bo1), XU Kewei3)
1) Key Laboratory of Radiation Physics and Technology, Ministry of Education,Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
2) Center of Analysis and Test, Sichuan University, Chengdu 610064
3) State Key Laboratory for Mechanical Behavior of Materials,College of Materials Science and Engineering,Xi'an Jiaotong University, Xi'an 710049
Cite this article: 

ZHANG Yanpo, REN Ding, LIN Liwei,YANG Bin, WANG Shanling,LIU Bo1), XU Kewei. CONTROLLED REACTION ON INTERFACE OF Cu/Cu(Ge, Zr)/SiO2/Si MULTILAYER FILM AND ITS THERMAL STABILITY. Acta Metall Sin, 2013, 49(10): 1264-1268.

Download:  PDF(999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A self-formation barrier method using CuX (X=Mn, Ti, Zr, Ru, RuN, WN, Ge, etc.)alloys with various concentration solutes has been extensively investigated to meet the requirements of low sheet resistivity, ultra-thin and high thermal stability for Cu metallization. However, intolerable reactions would take place at the interface of the Cu alloy layer and SiO2/Si layer before the processing temperature reaches high enough to drive the mass migration of alloy elements to interface. In fact, the reaction of Cu alloy layer with SiO2/Si layer is almost unavoidable due to that Cu diffuses very fast in Si substrate below 200℃. Among those Cu-based alloys, CuGe alloy system has received particular   attention because Cu can directly react with Ge below 150℃ and forms ε-Cu3Ge films which exhibit a remarkable resistivity (5.5 μΩ·cm), and the Cu3Ge films also possess high oxidation resistance and interface bonding performance, so can be used as a good diffusion barrier for Cu as well. However, two major problems prevent it from being put into practice. The first is that the mutual diffusion occures between the Cu3Ge films and the Si substrates above 400℃, and lead to a notable increase in resistivity. The second one is that the germanide film degrades morphologically at 350℃. Therefore, according to the deficiencies existing in these Cu-based alloys, the main objective of the present research aims at taking advantage of the selective reaction characteristic of Cu, Ge and Zr elements to achieve a controlled interfacereaction behavior of Cu/Cu(Ge, Zr)/SiO2/Si multilayer. The multilayer structure was characterized by FPPT, XRD, TEM, XPS and EDS. The results showed that the reaction sequence of the atoms in Cu(Ge, Zr) films and adjacent layers affected the thermal stability of Cu/Cu(Ge, Zr)/SiO2/Si multilayer structure. Under the temperature of 200℃, Ge atoms reacted selectively with Cu film and produced ε-Cu3Ge phase which exhibitted a remarkably low metallic resistivity, and the Cu3Ge phase could be used as a good diffusion barrier. With further increasing annealing temperature (above 450℃), Zr atoms precipitated at the interface or grain boundary of Cu3Ge layer and reacted with silicon oxide further to form stable and ultra-thin amorphous ZrOx/ZrSiyOx compounds. So the Cu3Ge layer combined with the amorphous ZrOx/ZrSiyOx compounds provided superior barrier properties in reducing Cu diffusion into Si at high annealed temperature.

Key words:  Cu(Ge, Zr) film      interface reaction      selectable reaction      thermal stability     
Received:  24 May 2013     

URL: 

https://www.ams.org.cn/EN/0.3724/SP.J.1037.2013.00284     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1264

[1] Semiconductor Industry Association. 2005 International Technology Roadmap for Semiconductors,TX, USA: International SEMATECH, 2005: 1

[2] Lozano J G, Lozano-Perez S, Bogan J, Wang Y C, Brennan B, Nellist P D, Hughes G.Appl Phys Lett, 2011; 98: 123112
[3] Haneda M, lijima J, Koike J. Appl Phys Lett, 2007; 90: 252107
[4] Chu J P, Lin C H, John V S. Appl Phys Lett, 2007; 91: 132109
[5] Zhan Y Z, Peng D, She J. Metall Mater Trans, 2012; 43: 4015
[6] Chu J P, Lin C H. Appl Phys Lett, 2005; 87: 211902
[7] Wang Y, Cao F, Zhang M L, Zhang T. Acta Mater, 2011; 59: 400
[8] Chen D, Dong J F, Ma G Z. J Cent South Univ, 2013; 20: 1137
[9] Liu C J, Chen J S. Appl Phys Lett, 2002; 80: 2678
[10] Liu B, Song Z X, Li Y H, Xu K W. Appl Phys Lett, 2008; 93: 174108
[11] Borek M A, Oktyabrsky S, Aboelfotoh M O, Narayan J. Appl Phys Lett, 1996; 69: 3560
[12] Aboelfotoh M O, Svensson B G. Phys Rev, 1991; 44B: 12742
[13] Doyle J P, Svensson B G, Aboelfotoh M O. J Appl Phys, 1996; 80: 2530
[14] Aboelfotoh M O, Krusin-Elbaum L. J Appl Phys, 1991; 75: 3382
[15] Aboelfotoh M O, Tawancy H M. J Appl Phys, 1994; 75: 2441
[16] Doyle J P, Svensson B G, Aboelfotoh M O, Hudner J. Phys Scr, 1994; 54: 297
[17] Gaudet S, Detavernier C, Kellock A J, Lavoie C. J Vac Sci Technol, 2006; 24: 474
[18] Lanford W A, Ding P J, Wang W, Hymes S, Murarka S P. Mater Chem Phys, 1995; 41: 192
[19] Liu B, Song Z X, Xu K W. Surf Coat Technol, 2007; 201: 5419
[20] Chromik R R, Neils W K, Cotts E J. J Appl Phys, 1999; 86: 4273
[21] Dean J A , translated by Shang J F. Lange's Handbook of Chemistry.Beijing: Science Press, 1991: 922
(Dean J A著, 尚久方译. 兰氏化学手册. 北京: 科学出版社, 1991: 922)
[22] Barin I. Thermochemical Data of Pure Substances. 3rd Ed., New York: VCH, 1995: 405
[23] Wang S Q, Mayer J W. J Appl Phys, 1988; 64: 4711
[24] Aboelfotoh M O, Borek M A, Narayan J. J Appl Phys, 2000; 87: 365

[25] Solberg J K. Acta Crystallogr, 1978; 34A: 684

[1] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[5] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[6] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[9] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[10] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[11] YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. 金属学报, 2015, 51(4): 465-472.
[12] LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL[J]. 金属学报, 2013, 49(6): 707-716.
[13] ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER[J]. 金属学报, 2013, 49(12): 1611-1616.
[14] FANG Lu,DING Xianfei, ZHANG Laiqi, HAO Guojian, LIN Junpin. MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb-TiAl ALLOY AFTER LONG-TERM THERMAL CYCLING[J]. 金属学报, 2013, 49(11): 1416-1422.
[15] GUO Weiwei, QI Chengjun, LI Xiaowu. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL[J]. 金属学报, 2013, 49(1): 107-114.
No Suggested Reading articles found!