Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1269-1274    DOI: 10.3724/SP.J.1037.2013.00122
Current Issue | Archive | Adv Search |
EFFECT OF IRRADIATION WITH PULSED ION BEAM ON THE MICROSTRUCTURE OF TiH2
LIU Yang1,2), XIANG Wei2), WANG Boyu2)
1) School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
2) China Academy of Engineering Physics, Mianyang 621900
Cite this article: 

LIU Yang, XIANG Wei, WANG Boyu. EFFECT OF IRRADIATION WITH PULSED ION BEAM ON THE MICROSTRUCTURE OF TiH2. Acta Metall Sin, 2013, 49(10): 1269-1274.

Download:  PDF(2268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium has long been of interest as hydrogen storage material since titanium has a high affinity to hydrogen isotopes. Titanium deuteride or tritide is an important nuclear material used in the field of nuclear technology. Investigations concerning hydrogen-titanium system seem to mainly focus on the hydrogen thermal desorption spectra so as to study hydrogen desorption kinetics from metal hydride and to determine the rate-controlling step, but little is known on the evolution of its compositional changes under a much more un-equilibrium condition. In the past two decades, the intense pulsed ion beam (IPIB) technique has received extensive attention as a tool for surface modification of materials. Compared with conventional ion implantation, IPIB irradiation into materials possesses a higher energy density with shorter pulse width and be typical of more intense thermal-mechanical effect. From such a point of view, considering the features of extreme high heating and cooling rate of IPIB, IPIB as a method to evaluate the stability characteristics of titanium hydride film is utilized in order to determine a predictable behavior of the film's evolution under an extreme un-equilibrium external condition. In current study, TiH2 films irradiated by intense pulsed ion beam have been investigated by using scanning electronic microscopy, surface profilometer, X-ray diffraction and slow positron annihilation, in order to evaluate the effect of irradiation with pulsed ion beam on the microstructure of TiH2. Three sets of TiH2 films are irradiated several shots at energy density ranging from 0.1 J/cm2 to 0.5 J/cm2. No noticeable phenomenon of melting and change of phase structures have occurred to samples under irradiation of 0.1-0.3 J/cm2. However, phenomenon of melting and indication of cracking has been detected on the surface after energy density reaches 0.5 J/cm2.Besides, desorption of hydrogen from the film, and a titanium hydride with a body centered tetragonal structure (bct), seldom reported by researchers and formed under extreme conditions, has also been identified only after energy density of IPIB reaches 0.5 J/cm2. S parameter of slow positron annihilation reflects that the crystal defect structures have been greatly changed by IPIB irradiation, in which S parameter reaches a large value at 0.3 J/cm2 with 1 shot, while a small one at 0.5 J/cm2 with 5 shots.

Key words:  TiH2      pulsed ion beam      surface morphology      slow positron annihilation     
Received:  18 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00122     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1269

[1] Karamanis D. Nucl Instrum Meth, 2002; 195B: 350

[2] Hughey B J. Nucl Instrum Meth, 1995; 95B: 393
[3] Bhosle V, Baburaj E G, Miranova M, Salama K. Mater Sci Eng, 2003; A356: 190
[4] Schur D V, Zaginaichenko S Y U, Adejev V M. Int J Hydrogen Energy, 1996; 21: 1121
[5] Wang Y, Wang P X, Zhang J W. Rare Met, 1995; 19: 348
(王宇, 王佩璇, 张建伟. 稀有金属, 1995; 19: 348)
[6] Shapovalova O M, Babenko E P, Babenko J V. Hydrogen Mater Sci Chem Met Hydrides, 2002; 82: 69
[7] Schwickert M, Carpene E, Lieb K P. Appl Phys Lett, 2004; 84: 5231
[8] Kasess U, Majer G, Stoll M. J Alloys Compd, 1997; 259: 74
[9] Wu H L, Zhao G Q, Zhou Z Y. Nucl Sci Technol, 1996; 19: 326
(伍怀龙, 赵国庆, 周筑颖. 核技术, 1996; 19: 326)
[10] Papazoglou T P, Hepworth M T. Trans Met Soc Alme, 1968; 242: 682
[11] Schwickert M, Carpene E, Lieb K P. Appl Phys Lett, 2004; 84: 5231
[12] Hirooka Y, Miyake M. J Nucl Mater, 1981; 96: 227
[13] Wasilewski R J, Kehl G L. Metallurgia, 1954; 50: 225
[14] Hirooka Y, Miyake M, Sano T. J Nucl Mater, 1981; 96: 227
[15] Wang W E. J Alloys Compd, 1996; 238: 6
[16] Lisowski W, Keim E G, Kaszkur Z, Smithers M A. Appl Surf Sci, 2008; 254: 2629
[17] Masatoshi T, Hiroki K, Setsuo Y, Hamazo N, Katsunobu I. Appl Surf Sci, 2008; 258: 1405
[18] Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge C P. Surf Coat Technol, 1998; 99: 74
[19] Zhu X P, Lei M K, Ma T C. Nucl Instrum Meth, 2003; 211B: 69
[20] Wang X, Zhang J S, Lei M K. Acta Metall Sin, 2007; 43: 393
(王旭, 张俊善, 雷明凯. 金属学报, 2007; 43: 393)
[21] Lei M K, Dong Z H, Zhang Z, Hu Y F, Zhu X P. Surf Coat Technol, 2007; 201: 5613
[22] Wang B Y, Xiang W, Tan X H, Dai J Y, Cheng L, Qin X B. Acta Metall Sin, 2010; 46: 810
(王博宇, 向伟, 谈效华, 戴晶怡, 程亮, 秦秀波. 金属学报, 2010; 46: 810)
[23] Miao Z, Cheng L L, Hui M W, Scholzc R, Gosele U. Thin Solid Films, 1998; 333: 245
[24] Wu Y C, Jean Y C. Appl Surf Sci, 2006; 252: 3278
[25] Dong Z H, Zhang Z, Liu C, Zhu X P, Lei M K. Appl Surf Sci, 1998; 99: 74
[26] Li P, Lei M K, Zhu X P. Appl Surf Sci, 2010; 257: 72
[27] Han X G, Zhu X P, Lei M K. Surf Coat Technol, 2011; 206: 874
[28] Zhang F G, Zhu X P, Wang M Y, Lei M K. Acta Metall Sin, 2011; 47: 958
(张峰刚, 朱小鹏, 王明阳, 雷明凯. 金属学报, 2011; 47: 958)
[29] Zheng P. J Mater Sci Lett, 1990; 9: 75
[30] Grambole D, Wang T, Herrmann F, Eichhorn F. Nucl Instrum Meth, 2003; 210B: 526
[31] Wang T S, Grambole D, Herrmann F, Peng H B, Wang S W. Surf Interf Anal, 2007; 39: 52
[32] Wang T S, Eichhorn F, Grambole D, Grotzschel R, Herrmann F, Kreissig U, Moller W. Condens Matter, 2002; 14: 11605
[1] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[2] ZHANG Fenggang ZHU Xiaopeng WANG Mingyang LEI Mingkai. SURFACE MODIFICATION OF WC-Ni CEMENTED CARBIDE FOR SEALS BY HIGH-INTENSITY PULSED ION BEAM IRRADIATION[J]. 金属学报, 2011, 47(7): 958-964.
[3] WANG Boyu XIANG Wei TAN Xiaohua DAI Jingyi CHENG Liang QIN Xiubo. EFFECT OF D+ BEAM IRRADIATION ON Ti FILM[J]. 金属学报, 2010, 46(7): 810-813.
[4] LIANG Yonghuang MAN Ruilin. PREPARATION AND CHARACTERIZATION OF ORGANIC HYBRID FILMS ON THE SURFACE OF Al TUBES[J]. 金属学报, 2010, 46(12): 1522-1528.
[5] Xu Wang. EXPERIMENTAL RESEARCH ON THE SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH-INTENSITY PULSED ION BEAMS[J]. 金属学报, 2007, 43(4): 393-398 .
[6] Jian Li; Jie Zhu. PREPARATION OF Cu-In FILM BY ELECTRODEPOSITION UNDER CONSTANT CURRENT[J]. 金属学报, 2006, 42(6): 667-672 .
[7] GUO Chengyan (Jilin Institute of Technology; Changchun); GOTO Takashi; HIRAI Toshio (Tohoku University; Japan). PREFERRED ORIENTATION OF DEPOSITED TiC COATING ON STEEL BY CVD[J]. 金属学报, 1992, 28(7): 85-89.
[8] KANG Zengqiao;GAI Xiuying;LI Jiabao;WANG Zhongguang State Key Laboratory for Fatigue and Fracture of Materials Institute of Metal Research; Academia Sinica; shenyang Correspondent research assistant; Institute of Metal Research; Academia Sinica; Shenyang 110015. INFLUENCE OF RESIDUAL STRESS AND SURFACE MORPHOLOGY ON FATIGUE PROPERTIES OF 60Mn STEEL[J]. 金属学报, 1992, 28(6): 40-46.
[9] SHI Nanlin;LIU Qingmin;CHANG Xinchun;QUAN Rong;XIA Fei Institute of Metal Research; Academia Sinica; Shenyang associate professor. CORRELATION BETWEEN TENSILE STRENGTH AND SURFACE MORPHOLOGY OF SiC FILAMENT[J]. 金属学报, 1990, 26(3): 153-156.
No Suggested Reading articles found!