Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 789-796    DOI: 10.3724/SP.J.1037.2012.00746
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION
WU Yan1, ZONG Yaping1,ZHANG Xiangang2
1)Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education),Northeastern University, Shenyang 110819
2)Department of Mathematics and Physics, Shenyang University of Chemical Technology, Shenyang 110142
Cite this article: 

WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION. Acta Metall Sin, 2013, 49(7): 789-796.

Download:  PDF(1706KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A phase field model has been established to investigate grain growth of nanocrystalline AZ31 Mg alloy under realistic spatial-temporal scales. Most previous phase field models are limited to grain growth at micron scale. A set of rules as following has been proposed to determine the real physical value of all parameters in this new model. The expression of local free energy density function is modified due to the different initial state of grain growth process at nanoscale. The grain boundary range and grain boundary energy are studied to determine the correct gradient and coupling parameters, respectively, where the term of grain boundary range is to explain the physical backgrounds of the order parameter gradients at grain boundary and the diffusion grain boundary. The mobility constant of grain boundary for this model is originated by fitting a group of grain size from experimental results and then the values of grain boundary mobility at different temperatures are calculated by the Arrhenius equation combined with this mobility constant. The study aims especially to find out the mechanisms for nano-structural evolution by comparing the simulated results with experimental results in the literature and simulated results in micron scale. It is shown that the grain boundary range will cover two adjacent grains in nanoscale polycrystalline and the grain boundary energy is lower down to about a half than that in micron scale polycrystalline.It is found that the grain growth rate at nanoscale is slower than that at the micron scale, and these simulated results can be proved by the experimental results in the literature. Simulations expose that solute atoms would like to segregate at the grain boundaries more severely in nano-structure than in micron-structure, and this may be the reason why nano--structure shows a lower boundary mobility to result in a strange low grain growth rate in the first stage.It is found that the grain size fluctuation is more intensely in nano-sized grains than that in micron-sized grains by the quantitative analysis of the mixed degree of grains size in nano-structure and micron-structure in the models.

Key words:  magnesium alloy      phase field model      nanocrystalline structure      grain growth     
Received:  18 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00746     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/789

[1] Siegel R W, Fougere G E.  Nanostruct Mater, 1995; 6: 205

[2] Youssef K, Scattergood R, Murty K, Koch C.  Scr Mater, 2006; 54: 251
[3] Hao Y L, Yang R.  Acta Metall Sin, 2005; 41: 1183
(郝玉琳, 杨锐. 金属学报, 2005; 41: 1183)
[4] Zong Y P, Wang M T, Guo W.  Acta Phys Sin, 2009; 58: S161
(宗亚平, 王明涛, 郭巍. 物理学报, 2009; 58: S161)
[5] Wang M, Zong B Y, Wang G.  Comput Mater Sci, 2009; 45: 217
[6] Wang M T, Zong Y P, Wang G.  Chin J Nonferrous Met, 2009; 19: 1555
(王明涛, 宗亚平, 王刚. 有色金属学报, 2009; 19: 1555)
[7] Wu Y, Zong B Y, Wang M T.  Mater Sci Forum, 2010; 633: 697
[8] Zhang X G, Zong Y P, Wang M T, Wu Y.  Acta Phys Sin, 2011; 60: 068201
(张宪刚, 宗亚平, 王明涛, 吴艳. 物理学报, 2011; 60: 068201)
[9] Zhang X G, Zong Y P, Wu Y.  Acta Phys Sin, 2012; 61: 088104
(张宪刚, 宗亚平, 吴艳. 物理学报, 2012; 61: 88104)
[10] Karma A, Rappel W J.  Phys Rev, 1996; 53E: 3017
[11] Wen Y, Wang B, Simmons J, Wang Y.  Acta Mater, 2006; 54: 2087
[12] Allen S M, Cahn J W.  Acta Metall, 1979; 27: 1085
[13] Cahn J W, Hilliard J E.J Chem Phys, 1958; 28: 258
[14] Krill III C, Chen L Q.Acta Mater, 2002; 50: 3059
[15] Nishizawa T, translated by Hao S M.  Thermodynamics of Microstructure.
Beijing: Chemical Industry Press, 2006: 136
(Nishizawa T著, 郝士明~译. 微观组织热力学. 北京: 化学工业出版社, 2006: 136)
[16] Shek C, Lai J, Lin G.  Nanostruct Mater, 1999; 11: 887
[17] Fan D, Geng C, Chen Q.  Acta Mater, 1997; 45: 1115
[18] Liu Z, Liang W, Xu B S, Ichinose H.  Mater Sci Technol, 2000; 8: 103
(刘珍, 梁伟, 许并社, 市野濑英喜. 材料科学与工艺, 2000; 8: 103)
[19] Deng C.  Master Thesis, Harbin Institute of Technology, 2009
(邓澄. 哈尔滨工业大学硕士学位论文, 2009)
[20] Gjostein N, Rhines F.  Acta Metall, 1959; 7: 319
[21] Van Swygenhoven H, Farkas D, Caro A.  Phys Rev, 2000; 62B: 831
[22] Wang J Q, Geng P, Zeng M G, Zhang B J, Qian C F.  Chin J Mater Res, 1997; 11: 316
(王建强, 耿平, 曾梅光, 张宝金, 钱存富. 材料研究学报, 1997; 11: 316)
[23] Zhang Y, Tao N, Lu K.  Acta Mater, 2008; 56: 2429
[24] Wen Y, Simmons J, Shen C, Woodward C, Wang Y.  Acta Mater, 2003; 51: 1123
[25] Hillert M.  Acta Metall, 1965; 13: 227
[26] Liu R C, Wang L Y, Gu L G, Huang G S.  Light Alloy Fabric Technol, 2004; 32: 22
(刘饶川, 汪凌云, 辜蕾刚, 黄光胜. 轻合金加工技术, 2004; 32: 22)
[27] Michels A, Krill C, Ehrhardt H, Birringer R, Wu D.  Acta Mater, 1999; 47: 214
[28] Farber B, Cadel E, Menand A, Schmitz G, Kirchheim R.  Acta Mater, 2000; 48: 789
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[7] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[8] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[9] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[10] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[11] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[12] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[13] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
No Suggested Reading articles found!