Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 682-688    DOI: 10.3724/SP.J.1037.2012.00735
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PHASE SELECTION IN DIRECTIONAL SOLIDIFICATION OF Co-Sb ALLOY
SUN Hongyuan, LI Shuangming, FENG Songke, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

SUN Hongyuan, LI Shuangming, FENG Songke, FU Hengzhi. MICROSTRUCTURE AND PHASE SELECTION IN DIRECTIONAL SOLIDIFICATION OF Co-Sb ALLOY. Acta Metall Sin, 2013, 49(6): 682-688.

Download:  PDF(2882KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The compound CoSb3 is one kind of thermoelectric material that has been received more attention due to its potential application in green refrigeration and power generation. The general way to prepare CoSb3 material is sintering and the solidification behavior of CoSb3 compound is rarely reported, since this compound is obtained through the peritectic reaction, and there exists phase competitive growth in solidification process. In this work, Bridgman directional solidification and laser rapid solidification experiments on Co-93.0%Sb (mass fraction) alloy were carried out. XRD, SEM and EDS were employed to determine the solidified phases and characterize the microstructure. The results showed that for Bridgman directional solidification, the solidification microstructure of Co-93.0%Sb alloy contained only the CoSb3 and Sb phases at the solidification rates of 2 and 5 μm/s, whereas at the solidification rates of 20, 50, 100 and 500 μm/s, the microstructure contained CoSb3, CoSb2 and Sb phases. Furthermore, the volume fraction of CoSb3 phase decreased with increasing solidification rate. For laser rapid solidification, the solidification microstructure consisted of CoSb3, CoSb2 and Sb phases at the scanning rate of 5 mm/s. As the scanning rate ranging from 10 to 50 mm/s, the microstructure is composed of only CoSb3 and Sb phases. The critical rate of peritectic phaseCoSb3 instead of primary CoSb2 solidified directly from the melt was theoretically predicted to 7.61 mm/s, agreeing well with the experiment result. In addition, the formation mechanisms of peritectic phase CoSb3 at Bridgeman directional solidification and laser rapid solidification were analysed. The formation of peritectic phase at low solidification rates was due to the local solidification time available for the peritectic reaction, and at high solidification rates higher than 10 mm/s the peritectic phase CoSb3 was obtained directly from the melt. Therefore to obtain a large volume fraction of peritectic phase CoSb3,  a low solidification rate is recommended.

Key words:  Co-Sb alloy      directional solidification      peritectic, microstructure      thermoelectric material      CoSb3     
Received:  18 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00735     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/682

[1] Disalvo F J.  Science, 1999; 285: 703

[2] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G.  Nat Mater, 2011; 10: 532
[3] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A,Vashaee D, Chen X Y, Liu J, Dresselhaus M S, Chen G, Ren Z F.  Science, 2008; 320: 634
[4] Snyder G J, Christensen M, Nishibori E, Caillat T, Iversen B B.  Nat Mater, 2004; 3:458
[5] Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G.  J Appl Phys, 2010; 107:094308
[6] Nagamoto Y, Tanaka K, Kyanagi T. In:  proc 17th Int Conf on Thermoelectrics, New York: IEEE Service Center, 1998: 302
[7] Xiong Z, Chen X, Huang X, Bai S, Chen L.  Acta Mater, 2010; 58: 3995
[8] Tang X, Zhang Q.  J Appl Phys, 2005; 97: 093712
[9] Tang X F, Zhang L M, Yuan R Z.  J Mater Res, 2001; 16: 3343
[10] Slack G A.  Thermoelectric Handbook. Boca Raton London: CRC, 1995: 407
[11] Caillat T, Fleurial J P, Borshchevsky A.  J Cryst Growth, 1996; 166: 722
[12] Akasaka M, Iida T, Sakuragi G, Furuyama S, Noda M, Matsui S, Ota M, Suzuki H, Sato H, Takanashi Y, Sakuragi S.  J Alloys Compd, 2005; 386: 228
[13] Takizawa H, Miura K, Masayuki Ito, Suzuki T, Endo T.  J Alloys Compd, 1999; 282: 79
[14] Sales B C, Mandrus D, Williams R K.  Science, 1996; 272: 1325
[15] Yu B L, Tang X F, Qi Q, Zhang Q J.   Acta Phys Sin, 2004; 53: 3130
(余柏林, 唐新峰, 祁琼, 张清杰. 物理学报, 2004, 53: 3130)
[16] Furuyama S, Iida T, Matsui S, Akasaka M, Nishio K, Takanashi Y.J Alloys Compd, 2006; 415:251
[17] Ishida K, Hasebe M, Ohnishi N, Nishizawa T.J Less Common Met, 1985; 114: 361
[18] Kurz W, Fisher D J.Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publications, 1998:110
[19] Karma A, Rappel W J, Fuh B C, Trivedi R.  Metall Mater Trans, 1998; 29A: 1457
[20] Liu D M.  PhD Dissertation, Harbin Institute of Technology, 2012
(刘冬梅. 哈尔滨工业大学博士学位论文, 2012)
[21] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.  Intermetallics, 2005; 13: 267
[22] Kerr H W, Kurz W.  Int Mater Rev, 1996; 41: 129
[23] Lu H Y, Li S M, Zhong H, Liu L, Fu H Z.  Acta Metall Sin, 2008; 44: 843
(吕海燕, 李双明, 钟宏, 刘林, 傅恒志. 金属学报, 2008; 44: 843)
[24] Kurz W.  Adv Eng Mater, 2001; 3: 443
[25] Umeda T, Okane T, Kurz W.  Acta Mater, 1996, 44: 4209
[26] Stefanescu D M.Science and Engineering of Casting Solidification. 2nd Ed., New York: Springer, 2009: 186
 
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[4] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] LIU Zhiyuan, WANG Yonggui, ZHAO Chengyu, YANG Ting, XIA Ailin. Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials[J]. 金属学报, 2022, 58(8): 979-991.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[9] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[10] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[14] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
No Suggested Reading articles found!