Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 787-793    DOI: 10.3724/SP.J.1037.2010.00092
论文 Current Issue | Archive | Adv Search |
THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution
YANG Yujuan, YAN Biao
School of Materials Science and Engineering, Shanghai Key Lab of Development and Application for Metal Functional Materials, Tongji University, Shanghai 200092
Cite this article: 

YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution. Acta Metall Sin, 2010, 46(7): 787-793.

Download:  PDF(873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using KKSO multi-phase field model, with equal lamellar width and thickness, three dimensional (3D) morphology evolution, lamellar-rod transition and the mechanism of adjustment of lamellar spacing of CBr4-C2Cl6   alloys are investigated at different initial lamellar spacings. It's found that, as for the hypoeutectic and eutectic CBr4-C2Cl6   alloy, different initial lamellar spacings may lead to lamellar-rod transition, which is related to the initial lamellar spacings. The CBr4-C2Cl6   hypereutectic lamellar alloy can't transit to rod-like eutectic, with the increase of the dimensionless initial lamellar spacings Λ in the range of 0.598-2.336, the sequence of morphology evolution is: lamellar merges to form 1λO→T-xλO→1λO→2λO→lamellar branching→zigzag bifurcation$\rightarrow$lamellar destabilizes to form the disordered pattern. The simulated results also showed that the mechanism of adjustment of lamellar spacing in 3D of the CBr4-C2Cl6   hypereutectic alloy is similar to that in two dimensions (2D), which is lamellar annihilation and branching on the whole, the lamellar annihilation takes place with a smaller initial lamellar spacing while the lamellar branching takes place with a bigger initial lamellar spacing. The adjustment mechanism of the lamellar spacing in 3D is more complex than that in 2D because of the additional effect of the third dimension.

Key words:  three dimensional multi-phase field      eutectic      morphology evolution      lamellar-rod transition      adjustment of lamellar spacing     
Received:  19 February 2010     
Fund: 

Supported by China Postdoctoral Science Foundation (No.20090460654) and Shanghai Science and Technology Committee (Nos.0752nm004 and 08DZ2201300)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00092     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/787

[1] Cochrane R F, Greer A L, Eckler K, Herlach D M. Mater Sci Eng, 1991; A133: 698
[2] Li J F, Zhou Y H. Acta Mater, 2005; 53: 2351
[3] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland, Germany, UK and USA: Trans Tech Publication, 1998: 93
[4] Davis H S. Theory of Solidification. New York: Cambridge University Press, 2001: 255
[5] Huang W D, Shan B L, Zhou Y H. Acta Phy Sin, 1991; 40: 323
(黄卫东, 商宝禄, 周尧和. 物理学报, 1991; 40: 323)
[6] Langer J S. In: Souletie J, Vannimenus J, Stora R, eds., Chance and Matter: Les Houches, Session XLVI, 1986, Amsterdam: Elsevier Science Publisher B. V., 1987: 629
[7] Caginalp G, Fife P. Phys Rev, 1986; 33B: 7792
[8] Karma A, Rappel W J. Phys Rev, 1998; 57E: 4323
[9] Yang Y J, Yan B. Acta Metall Sin, 2010; 46: 781
(杨玉娟, 严彪. 金属学报, 2010; 46: 781)
[10] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Li J J, Yang G C. J Crys Growth, 2009; 311: 2496
[11] Hurle D T J, Jakeman E. J Crys Growth, 1968; 3–4: 574
[12] Jackson K A, Hunt J D. Trans Metall Soc of AIME, 1966; 236: 1129
[13] Liu S, Lee J H, Enlow D, Trivedi R. In: Rappaz M, Beckerman C, Trivedi R, eds., Proc Symposium Sponsored by the Solidification Committee of MPMD of TMS, Charlotte, North Carolina: TMS Publication, 2004: 257
[14] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Li J J, Yang G C. Metall Mater Trans, 2009; 40A: 1670
[15] Karma A, Sarkissian A. Metall Mater Trans, 1996; 27A: 635
[16] Datye V, Langer J S. Phys Rev, 1981; 24B: 4155
[17] Walker H, Liu S, Lee H J, Trivedi R. Metall Mater Trans, 2007; 38A: 1417

[1] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[2] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[4] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[5] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[7] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[8] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[10] BAO Feiyang, LI Yanfen, WANG Guangquan, ZHANG Jiarong, YAN Wei, SHI Quanqiang, SHAN Yiyin, YANG Ke, XU Bin, SONG Danrong, YAN Mingyu, WEI Xuedong. Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃[J]. 金属学报, 2020, 56(10): 1366-1376.
[11] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[12] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[13] Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy[J]. 金属学报, 2018, 54(7): 1059-1067.
[14] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[15] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
No Suggested Reading articles found!