THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6 ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution
YANG Yujuan, YAN Biao
School of Materials Science and Engineering, Shanghai Key Lab of Development and Application for Metal Functional Materials, Tongji University, Shanghai 200092
Cite this article:
YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6 ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution. Acta Metall Sin, 2010, 46(7): 787-793.
Using KKSO multi-phase field model, with equal lamellar width and thickness, three dimensional (3D) morphology evolution, lamellar-rod transition and the mechanism of adjustment of lamellar spacing of CBr4-C2Cl6 alloys are investigated at different initial lamellar spacings. It's found that, as for the hypoeutectic and eutectic CBr4-C2Cl6 alloy, different initial lamellar spacings may lead to lamellar-rod transition, which is related to the initial lamellar spacings. The CBr4-C2Cl6 hypereutectic lamellar alloy can't transit to rod-like eutectic, with the increase of the dimensionless initial lamellar spacings Λ in the range of 0.598-2.336, the sequence of morphology evolution is: lamellar merges to form 1λO→T-xλO→1λO→2λO→lamellar branching→zigzag bifurcation$\rightarrow$lamellar destabilizes to form the disordered pattern. The simulated results also showed that the mechanism of adjustment of lamellar spacing in 3D of the CBr4-C2Cl6 hypereutectic alloy is similar to that in two dimensions (2D), which is lamellar annihilation and branching on the whole, the lamellar annihilation takes place with a smaller initial lamellar spacing while the lamellar branching takes place with a bigger initial lamellar spacing. The adjustment mechanism of the lamellar spacing in 3D is more complex than that in 2D because of the additional effect of the third dimension.
[1] Cochrane R F, Greer A L, Eckler K, Herlach D M. Mater Sci Eng, 1991; A133: 698
[2] Li J F, Zhou Y H. Acta Mater, 2005; 53: 2351
[3] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland, Germany, UK and USA: Trans Tech Publication, 1998: 93
[4] Davis H S. Theory of Solidification. New York: Cambridge University Press, 2001: 255
[5] Huang W D, Shan B L, Zhou Y H. Acta Phy Sin, 1991; 40: 323
(黄卫东, 商宝禄, 周尧和. 物理学报, 1991; 40: 323)
[6] Langer J S. In: Souletie J, Vannimenus J, Stora R, eds., Chance and Matter: Les Houches, Session XLVI, 1986, Amsterdam: Elsevier Science Publisher B. V., 1987: 629
[7] Caginalp G, Fife P. Phys Rev, 1986; 33B: 7792
[8] Karma A, Rappel W J. Phys Rev, 1998; 57E: 4323
[9] Yang Y J, Yan B. Acta Metall Sin, 2010; 46: 781
(杨玉娟, 严彪. 金属学报, 2010; 46: 781)
[10] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Li J J, Yang G C. J Crys Growth, 2009; 311: 2496
[11] Hurle D T J, Jakeman E. J Crys Growth, 1968; 3–4: 574
[12] Jackson K A, Hunt J D. Trans Metall Soc of AIME, 1966; 236: 1129
[13] Liu S, Lee J H, Enlow D, Trivedi R. In: Rappaz M, Beckerman C, Trivedi R, eds., Proc Symposium Sponsored by the Solidification Committee of MPMD of TMS, Charlotte, North Carolina: TMS Publication, 2004: 257
[14] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Li J J, Yang G C. Metall Mater Trans, 2009; 40A: 1670
[15] Karma A, Sarkissian A. Metall Mater Trans, 1996; 27A: 635
[16] Datye V, Langer J S. Phys Rev, 1981; 24B: 4155
[17] Walker H, Liu S, Lee H J, Trivedi R. Metall Mater Trans, 2007; 38A: 1417