Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 661-670    DOI: 10.3724/SP.J.1037.2011.00769
论文 Current Issue | Archive | Adv Search |
CLASSICAL PRECIPITATION DYNAMIC MODEL OF γ' PHASE OF NICKEL--BASED SUPER ALLOYS AND APPLICATIONS
SHI Yuye1, JIAO Shaoyang1,2, DONG Jianxin1, ZHANG Maicang1
1. School of Materials Science and Engineering, University of Science  and Technology Beijing, Beijing 100083
2. China Nuclear Power Engineering Co. Ltd., Beijing 100840
Cite this article: 

SHI Yuye, JIAO Shaoyang, DONG Jianxin, ZHANG Maicang. CLASSICAL PRECIPITATION DYNAMIC MODEL OF γ' PHASE OF NICKEL--BASED SUPER ALLOYS AND APPLICATIONS. Acta Metall Sin, 2012, 48(6): 661-670.

Download:  PDF(6177KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the classical nucleation theory, and considering the effects of heat temperature and preservation time on precipitation, the γ' precipitation model in nickel-based superalloy was established. In combination with the characteristic value data of γ' precipitation which was got by isothermal aging experiment of GH738 alloy, the relative accuracy of simulation result was verified. Results show that the classic dynamic model of the precipitation can better forecast that γ' phase of multiple complex nickel--based alloy system mainly precipitate by uniform nucleation. Further, precipitation model was combined with four typical superalloys GH80A, GH738, U720Li and DD407. The effects of the contents of Al, Ti and its ratio change on the precipitation of γ' were calculated and analyzed. Results showed that the better role of Al than Ti on equilibrium content. Under the premise of equal amount of Al + Ti, the increasing of Ti had a greater contribution to the driving force of precipitation and complete precipitation time, and increased the volume fraction of the beginning of precipitation, but reduced the size of precipitated phase.
Key words:  classical nucleation theory      super alloy, precipitate      simulation     
Received:  07 December 2011     
ZTFLH: 

TG132.3

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00769     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/661

[1] Wang Y, Banerjee D, Su C C.  Acta Mater, 1998; 46: 2983

[2] Wang G, Du D S, Ma N.  Acta Mater, 2009; 57: 316

[3] Gale W F, Nemani R V, Horton J A.  J Mater Sci, 1996; 31: 1681

[4] Mao J.  PhD Thesis, West Virginia University, Morgantown, 2002

[5] Booth-Morrison C, Weninger J, Sudbrack C K, Mao Z, Noebe R D,Seidman D N.  Acta Mater, 2008; 56: 3422

[6] Kelekanjeri S K, Gerhardt R A.  Electrochim Acta, 2006; 51: 1873

[7] Yao Z H, Dong J X, Zhang M C, Yu Q Y.  Trans Mater Heat Treat,2011; 32(10): 43

    (姚志浩, 董建新, 张麦仓, 于秋颖. 材料热处理学报, 2011; 32(10): 43)

[8] Oja M, Chandran K S, Tryon R G.  Int J Fatigue, 2010; 32: 551

[9] Moat R J, Pinkerton A J, Li L, Withers P J, Preuss M.  Acta Mater,2009; 57: 1220

[10] Wisniewski A, Beddoes J.  Mater Sci Eng, 2009; A510: 266

[11] Wang Y, Sun F, Dong X P, Zhang L T, Shan A D.  Acta Metall Sin,2010; 46: 334

     (王衣, 孙峰, 董显平, 张澜庭, 单爱党. 金属学报, 2010; 46: 334)

[12] Wang M G, Tian S G, Yu X F, Qian B J.  Rare Met Mater Eng,2010; 39: 268

 (王明罡, 田素贵, 于兴福, 钱本江. 稀有金属材料与工程, 2010; 39: 268)

[13] Zhu T, Wang C Y, Gan Y.  Acta Phys Sin, 2009; 58: 156

     (朱弢,王崇愚, 干勇. 物理学报, 2009; 58: 156)

[14] Wen Y H, Zhu T, Cao L X, Wang C Y.  Acta Phys Sin, 2003; 52: 2520

     (文玉华, 朱弢,曹立霞, 王崇愚. 物理学报, 2003; 52: 2520)

[15] Lifshitz I M, Slyozov V V.  J Phys Chem Sol, 1961; 19: 35

[16] Wagner C.  Z Elektrochem, 1961; 65: 581

[17] Wang X D, Wang Q, Jiang J Z.  J Alloys Compd, 2007; 440: 189

[18] Hong C M, Dong J X, Zhang Y F, Zhang M C, Zheng L.  Rare Met Mater Eng, 2009; 38: 510

     (洪成淼, 董建新, 张玉峰, 张麦仓, 郑磊. 稀有金属材料与工程, 2009; 38: 510)

[19] Song X P, Li H Y, Gai J F, Chen G L.  Acta Metall Sin,2005; 41: 1233

     (宋西平, 李红宇, 盖靖峰, 陈国良. 金属学报, 2005; 41: 1233)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[9] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[12] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[13] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
No Suggested Reading articles found!