Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 469-474    DOI: 10.3724/SP.J.1037.2011.00714
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS
YU Lihua, MA Bingyang, XU Junhua
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
Cite this article: 

YU Lihua, MA Bingyang, XU Junhua. INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS. Acta Metall Sin, 2012, 48(4): 469-474.

Download:  PDF(800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ZrCN thin films with different C contents were deposited by reactive unbalanced magnetron sputtering. Their chemical composition, microstructure, surface morphology, mechanical and tribological properties were investigated by XPS, XRD, SEM, AFM, nanoindentation and tribometer. The results indicated that the atomic ratios of (C+N)/Zr played an important role in phase configuration, microstructure, mechanical and tribological properties. When the ratio was less than 1, a Zr(C, N) solid solution was formed due to the dissolution of C into the ZrN lattice. When the ratio was larger than 1, the amorphous phase CN and C appeared and the ZrCN thin films had a fcc crystal structure. As the C contents increased, the diffraction peak decreased and widen, and the hardness of ZrCN thin films increased first and then decreased. As the C contents increased, the coefficient of friction of ZrCN thin films decreased and the wear scar became more shallower and narrower. The incorporation of C changed the wear mode and improved the friction and wear behaviors. The hardness of ZrCN film reached 31 GPa and friction coefficient was 0.26 when C content was 13.2%.
Key words:  ZrCN thin film      nanostructure      mechanical behavior      friction and wear     
Received:  15 November 2011     
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00714     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/469

[1] Kelesoglu E, Mitterer C, Kazmanli M K, Urgen M.  Surf Coat Technol, 1999; 116: 133

[2] Wu D, Zhang Z, Fu W, Fan X, Guo H.  Appl Phys,1997; 64A: 593

[3] Sue J A, Chang T P.  Surf Coat Technol, 1995; 76: 61

[4] Sakamoto I, Maruno S, Jin P.  Thin Solid Films,1993; 228: 169

[5] Deng J X, Liu J H, Ding Z L, Niu M.  Mater Des, 2008; 29: 1828

[6] Deng J X, Liu J H, Zhao J L, Song W L, Niu M.  Wear,2008; 264: 298

[7] Nong S B, Yu L H, Xu J H.  Surf Technol, 2008; 37: 5

    (农尚斌, 喻利花, 许俊华. 表面技术, 2008; 37: 5)

[8] Yu L H, Xue A J, Dong S T, Xu J H.  Trans Mater Heat Treat,2010; 31: 140

    (喻利花, 薛安俊, 董松涛, 许俊华. 材料热处理学报, 2010; 31: 140)

[9] Lu Y H, Shen Y G, Zhou Z F, Li K Y.  J Vac Sci Technol,2007; 25: 1539

[10] Chen R, Tu J P, Liu D G, Mai Y J, Gu C D.  Surf Coat Technol,2011; 205: 5228

[11] Kudapa S, Narasimhan K, Boppana P, Russell W C.  Surf Coat Technol, 1999; 120: 259

[12] Khan I A, Jabbar S, Hussain T, Hassan M, Ahmad R, Zakaullah M,Rawat R S.  Nucl Instrum Meth, 2010; 268B: 2228

[13] Larijani M M, Zanjanbar M B, Majdabadi A.  J Alloys Compd,2010; 492: 735

[14] Grigore E, Ruset C, Li X, Dong H.  Surf Coat Technol,2010; 204: 2006

[15] Gu J D, Chen P L.  Surf Coat Technol, 2006; 200: 3341

[16] Rie K T, Gebauer A, Wohle J.  Surf Coat Technol, 1996; 86--87: 498

[17] Rie K T, Wohle J.  Surf Coat Technol, 1999; 112: 226

[18] Hollstein F, Kitta D, Louda P, Pacal F, Meinhardt J. Surf Coat Technol, 2001; 142: 1063

[19] Oliver W C, Pharr G M.  J Mater Res, 1992; 7: 1564

[20] Boyer H E.  ASM Int, 1987; 1987: 188

[21] Cammarata R, Schlesinger T, Kim C, Qadri S, Edelstein A. Appl Phys Lett, 1990; 56: 1862

[22] Hultman L.  Vacuum, 2000; 57: 1

[23] Silva E, De Figueiredo M R, Franz R, Galindo R E, Palacio C, Espinosa A, Calderon S, Mitterer C, Carvalho S.  Surf Coat Technol,2010; 205: 2134

[24] Klug H, Alexander L.  Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley, 1974: 1

[25] Jhi S H, Ihm J, Louie S G, Cohen M L.  Nature, 1999; 399: 132

[26] Ziegele H, Rebholz C, Voevodin A, Leyland A, Rohde S, Matthews A. Tribology Int, 1997; 30: 845

[27] Li M Z.  Master Dessertation, Xi'an University of Technology, 2010

     (李铭志. 西安理工大学硕士论文, 2010)

[28] Takadoum J, Bennani H H.  Surf Coat Technol, 1997; 96: 272
[1] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[4] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[5] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[6] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[7] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[8] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[9] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[10] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[11] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[12] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[13] Chunyong LIANG, Jingzu HAO, Hongshui WANG, Baoe LI, Dan XIA. Preparation and Research Progress of Contact-Induced Surface of Metal Implants[J]. 金属学报, 2017, 53(10): 1265-1283.
[14] Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN,Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 956-964.
[15] Jianhai YANG,Yuxiang ZHANG,Liling GE,Jiazhao CHEN,Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY[J]. 金属学报, 2016, 52(11): 1413-1422.
No Suggested Reading articles found!