Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 435-440    DOI: 10.3724/SP.J.1037.2011.00738
论文 Current Issue | Archive | Adv Search |
EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL
WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL. Acta Metall Sin, 2012, 48(4): 435-440.

Download:  PDF(809KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In the present paper, ultra fast cooling (UFC) technology was applied in the cooling process to treat medium carbon steels after hot strip rolling, and the finish rolling temperature and UFC stop temperature are controlled as the important parameters. The effects of cooling path on the microstructure and hole-expansion property of annealing medium carbon steels were investigated. The results show that finely dispersed spherical cementite could be formed in ferrite matrix after annealing treatment. With decreasing the fininsh rolling temperature and UFC stop temperature, the spheroidized cementites after annealing were more homogeneous and dispersed finely. During hole-expansion test, cracks were observed to form usually in the edge region around the punched hole when the tangential elongation exceeded the forming limit, and cracks are mainly formed in the way of micro-voids coalescence. Fine and homogeneous microstructure comprised of ferrite and spheroidized cementite could improve the elongation of the experimental sheets, suppressing the coalescence of micro-voids, and improving the hole-expansion property.
Key words:  ultra fast cooling      medium carbon steel      spheroidized cementite      hole-expansion     
Received:  28 November 2011     
ZTFLH: 

TG355.5

 
Fund: 

;The Fundamental Research Funds for the Central Universities

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00738     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/435

[1] Hu C L, Zhao Z, Yin G R, Yuan Z F, Xu X L.  Trans Nonferr Met Soc China, 2009; 19(suppl 3): s552

[2] Zhang X Q, Peng Y H, Ruan X Y, Yamazaki K.  J Mater Process Technol, 2006; 174(1--3): 74

[3] Lin H S, Lee C Y, Wu C H.  Int J Machine Tools Manuf, 2007; 47: 168

[4] Fujita T, Nakamura N, Iizuka S.  JFE Technol Rep, 2004; (4): 44

[5] Comstock R J, Jr Scherrer D K, Adamczyk R D.  J Mater Eng Perform, 2006; 15: 675

[6] Fang X, Fan Z, Ralph B.  J Mater Sci, 2003; 38: 3877

[7] Cho Y R, Chung J H, Ku H H, Kim I B.  Met Mater, 1999; 5: 571

[8] Takechi H.  Proc 5th Int Conf on HSLA Steels. China: The Chinese Society for Metals, 2005: 58

[9] Kagechika H.  ISIJ Int, 2006; 46: 939

[10] Shimizu T, Funakawa Y, Kaneko S.  JFE Technol Rep,2004; (4): 25

[11] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945

[12] Takasashi M.  Nippon Steel Technol Rep, 2003; 88: 3

[13] Liu X H, Yu G F, Jiao J M, Zhang Z P, Peng L G, Wang G D. Iron Steel, 2004; 39(8): 71

     (刘相华, 余广夫, 焦景民, 张中平, 彭良贵, 王国栋. 钢铁, 2004; 39(8): 71)

[14] Buzzichelli G, Anelli E.  ISIJ Int, 2002; 42: 1354

[15] Wang G D.  Shanghai Met, 2008; 30(2): 1

     (王国栋. 上海金属, 2008; 30(2): 1)

[16] Leeuwe Y V, Onink M, Sietsm J.  ISIJ Int, 2001; 41: 1037

[17] O'Brien J M, Hosford W F.  Metall Mater Trans,2002; 33A: 1255

[18] Hyun D I, Oak S M, Kang S S, Moon Y H.  J Mater Process Technol, 2002; 130: 9

[19] Williams D B, Carter C B.  Transmission Electron Microscopy: A Textbook for Materials Science. Beijing: Tsinghua University Press,2007: 365

     (Williams D B, Carter C B. 透射电子显微学: 材料科学教程, 北京:清华大学出版社, 2007: 365)

[20] Yong Q L.  Secondary Phases in Steels. Beijing:Metallurgical Industry Press, 2006: 32

     (雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 32)

[21] Vedula K M, Heckel R W.  Metall Mater Trans, 1970; 1B:9

[22] Gang U G, Lee J C, Nam W J.  Met Mater Int, 2009; 15: 719

[23] Fargas G, Anglada M, Mateo A.  J Mater ProcessTechnol, 2009; 209: 1770
 
[1] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[2] WANG Bin, LIU Zhenyu, Feng Jie, ZHOU Xiaoguang, WANG Guodong. PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING[J]. 金属学报, 2014, 50(6): 652-658.
[3] WU Si, LI Xiucheng, ZHANG Juan, SHANG Chengjia. EFFECT OF Nb ON TRANSFORMATION AND MICROSTRUCTURE REFINEMENT IN MEDIUM CARBON STEEL[J]. 金属学报, 2014, 50(4): 400-408.
[4] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[5] CHEN Jun, TANG Shuai, LIU Zhenyu, WANG Guodong. EFFECTS OF COOLING PROCESS ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND PRECIPITATION BEHAVIORS OF NIOBIUM-TITANIUM MICRO-ALLOYED STEEL[J]. 金属学报, 2012, 48(4): 441-449.
[6] ZHANG Han BAI Bingzhe. MICROSTRUCTURAL\, EVOLUTION OF Mn-Si-Cr MEDIUM CARBON STEEL DEFORMED UNDER UNDERCOOLED AUSTENITE STATE[J]. 金属学报, 2010, 46(1): 47-51.
[7] ZHANG Jiwang LU Liantao ZHANG Weihua. ANALYSIS ON FATIGUE PROPERTY OF MICROSHOT PEENED MEDIUM CARBON STEEL[J]. 金属学报, 2009, 45(11): 1378-1383.
[8] . The distribution and diffusion of carbon atoms during deformation of undercooled austenite in medium carbon steel[J]. 金属学报, 2007, 43(8): 785-790 .
[9] ;. Microstructure Evolution of medium carbon steel during deformation of undercooled austenite[J]. 金属学报, 2007, 42(1): 27-34 .
[10] HUI Weijun; TIAN Peng; DONG Han; SU Shihuai; YU Tongren; WENG Yuqing. Influence of Deformation Temperature on the Microstructure Transformation in Medium Carbon Steel[J]. 金属学报, 2005, 41(6): 611-616 .
[11] LIU Yumen;HE Zhirong Xi'an Jiaotong University. SOME CHARCTERISTICS OF MARTENSITE IN MEDIUM CARBON IRON ALLOY[J]. 金属学报, 1989, 25(2): 61-64.
No Suggested Reading articles found!