|
|
HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY |
WANG Gang, XU Lei, WANG Yong, ZHENG Zhuo, CUI Yuyou, YANG Rui |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
WANG Gang XU Lei WANG Yong ZHENG Zhuo CUI Yuyou YANG Rui. HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY. Acta Metall Sin, 2011, 47(5): 587-593.
|
Abstract The hot deformation behavior of a high-Nb-containing TiAl based alloy has been studied using the processing map approach. Compression tests were conducted in the temperature range of 950-1300 ℃ and the strain rate range of 0.001 s-1 to 10 s-1 on a Gleeble-3800 testing system. The flow stress was found to be strongly dependent on the temperature and the strain rate. The regimes of flow instability have been delineated in the temperature range of 950-1200 ℃ and the strain rate ranges from 1 s-1 to 10 s-1, as well as in the temperature of 1250-1300 ℃ and the strain rate of 10 s-1. The optimal hot-working conditions for the investigated TiAl alloy are in two regimes: (i) in the temperature range 950-1100 ℃ and at the strain rate of 0.001 s-1 to 0.1 s-1, and (ii) in the temperature range 1250-1300 ℃ and at the strain rate of 0.001 s-1 to 1 s-1. The material exhibited dynamic recrystallization to produce a fine-grained microstructure in these conditions. In the temperature range 1150-1200 ℃ with the strain rate 0.001 s-1, the alloy exhibited superplasticity.
|
Received: 04 January 2011
|
|
[1] Bystrzanowski S, Bartels A, Clemens H, Gerling R. Intermetallics, 2008; 16: 717[2] Wang Y H, Lin J P, Xu X J, He Y H, Wang Y L, Chen G L. J Alloys Compd, 2008; 458: 313[3] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L. Mater Sci Eng, 2007; A471: 82[4] Yan Y Q, Wang W S, Zhang Z Q, Luo G Z, Zhou L. Mater Rev, 2000; 14: 15(闰蕴琪, 王文生, 张振棋, 罗国珍, 周廉. 材料导报, 2000; 14: 15)[5] Lu X, Zhao L M, Qu X H. Mater Rev, 2006; 20: 69(路 新, 赵丽明, 曲选辉. 材料导报, 2006; 20: 69)[6] Prasad Y V R K. J Mater Eng Perform, 2003; 12: 638[7] Srinivasan N, Prasad Y V R K. Rao P R. Mater Sci Eng, 2008; A476: 146[8] Srinivasan N, Prasad Y V R K. J Mater Process Technol, 1995; 51: 171[9] Huang G S, Wang L Y, Chen H, Huang G J, Zhang S Q. Chin J Nonferrous Met, 2005; 15: 763(黄光胜, 汪凌云, 陈华, 黄光杰, 张所全. 中国有色金属学报, 2005; 15: 763)[10] Prasad Y V R K, Seshacharyulu T. Mater Sci Eng, 1998; A243: 82[11] Ramanathan S, Karthikeyan R, Gupta M. J Mater Process Technol, 2007; 183: 104[12] Sivakesavam O, Prasad Y V R K. Mater Sci Eng, 2002; A323: 270[13] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096(唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)[14] Ju Q, Li D G, Liu G Q. Acta Metall Sin, 2006; 42: 218(鞠泉, 李殿国, 刘国权. 金属学报, 2006; 42: 218)[15] Weiss I, Semiatin S L. Mater Sci Eng, 1999; A263: 243[16] Prasad, Y V R K, Seshacharyulu T. Int Mater Rev, 1998; 43: 243[17] He J S, Wang Y W. Metal Superplasticity. Beijing: Science Press, 1986: 26(何景素, 王燕文. 金属的超塑性. 北京: 科学出版社, 1986: 26)[18] LeeWB, Yang H S, Kim YW, Mukherjee A K. Scr Metall Mater, 1993; 29: 1403[19] Zhang C P, Zhang K F. J Alloys Compd, 2010; 492: 236[20] Ashby M F, Verrall R A. Acta Metall, 1973; 21: 149 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|