Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 587-593    DOI: 10.3724/SP.J.1037.2011.00005
论文 Current Issue | Archive | Adv Search |
HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY
WANG Gang, XU Lei, WANG Yong, ZHENG Zhuo, CUI Yuyou, YANG Rui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Gang XU Lei WANG Yong ZHENG Zhuo CUI Yuyou YANG Rui. HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY. Acta Metall Sin, 2011, 47(5): 587-593.

Download:  PDF(1606KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hot deformation behavior of a high-Nb-containing TiAl based alloy has been studied using the processing map approach. Compression tests were conducted in the temperature range of 950-1300 ℃ and the strain rate range of 0.001 s-1  to 10 s-1 on a Gleeble-3800 testing system. The flow stress was found to be strongly dependent on the temperature and the strain rate. The regimes of flow instability have been delineated in the temperature range of 950-1200 ℃ and the strain rate ranges from 1 s-1 to 10 s-1, as well as in the temperature of 1250-1300 ℃ and the strain rate of 10 s-1. The optimal hot-working conditions for the investigated TiAl alloy are in two regimes: (i) in the temperature range 950-1100 ℃ and at the strain rate of 0.001 s-1 to 0.1 s-1, and (ii) in the temperature range 1250-1300 ℃ and at the strain rate of 0.001 s-1 to 1 s-1. The material exhibited dynamic recrystallization to produce a fine-grained microstructure in these conditions. In the temperature range 1150-1200 ℃ with the strain rate 0.001 s-1, the alloy exhibited superplasticity.
Key words:  TiAl alloy      processing map      hot deformation      dynamic recrystallization      superplasticity     
Received:  04 January 2011     
ZTFLH: 

TG164

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00005     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/587

[1] Bystrzanowski S, Bartels A, Clemens H, Gerling R. Intermetallics, 2008; 16: 717

[2] Wang Y H, Lin J P, Xu X J, He Y H, Wang Y L, Chen G L. J Alloys Compd, 2008; 458: 313

[3] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L. Mater Sci Eng, 2007; A471: 82

[4] Yan Y Q, Wang W S, Zhang Z Q, Luo G Z, Zhou L. Mater Rev, 2000; 14: 15

(闰蕴琪, 王文生, 张振棋, 罗国珍, 周廉. 材料导报, 2000; 14: 15)

[5] Lu X, Zhao L M, Qu X H. Mater Rev, 2006; 20: 69

(路 新, 赵丽明, 曲选辉. 材料导报, 2006; 20: 69)

[6] Prasad Y V R K. J Mater Eng Perform, 2003; 12: 638

[7] Srinivasan N, Prasad Y V R K. Rao P R. Mater Sci Eng, 2008; A476: 146

[8] Srinivasan N, Prasad Y V R K. J Mater Process Technol, 1995; 51: 171

[9] Huang G S, Wang L Y, Chen H, Huang G J, Zhang S Q. Chin J Nonferrous Met, 2005; 15: 763

(黄光胜, 汪凌云, 陈华, 黄光杰, 张所全. 中国有色金属学报, 2005; 15: 763)

[10] Prasad Y V R K, Seshacharyulu T. Mater Sci Eng, 1998; A243: 82

[11] Ramanathan S, Karthikeyan R, Gupta M. J Mater Process Technol, 2007; 183: 104

[12] Sivakesavam O, Prasad Y V R K. Mater Sci Eng, 2002; A323: 270

[13] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096

(唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[14] Ju Q, Li D G, Liu G Q. Acta Metall Sin, 2006; 42: 218

(鞠泉, 李殿国, 刘国权. 金属学报, 2006; 42: 218)

[15] Weiss I, Semiatin S L. Mater Sci Eng, 1999; A263: 243

[16] Prasad, Y V R K, Seshacharyulu T. Int Mater Rev, 1998; 43: 243

[17] He J S, Wang Y W. Metal Superplasticity. Beijing: Science Press, 1986: 26

(何景素, 王燕文. 金属的超塑性. 北京: 科学出版社, 1986: 26)

[18] LeeWB, Yang H S, Kim YW, Mukherjee A K. Scr Metall Mater, 1993; 29: 1403

[19] Zhang C P, Zhang K F. J Alloys Compd, 2010; 492: 236

[20] Ashby M F, Verrall R A. Acta Metall, 1973; 21: 149
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[4] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[5] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[11] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[12] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[14] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[15] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
No Suggested Reading articles found!