Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 502-506    DOI: 10.3724/SP.J.1037.2011.00001
论文 Current Issue | Archive | Adv Search |
EFFECTS OF PREANNEALING UNDER PRESSURE ON THE CRYSTALLIZATION BEHAVIOR AND THERMAL STABILITY OF Gd36La20Al24Co20 BULK
METALLIC GLASS
LIU Tong, ZHU Yarong, ZHANG Tongwen, ZHANG Tao
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article: 

LIU Tong ZHU Yarong ZHANG Tongwen ZHANG Tao. EFFECTS OF PREANNEALING UNDER PRESSURE ON THE CRYSTALLIZATION BEHAVIOR AND THERMAL STABILITY OF Gd36La20Al24Co20 BULK
METALLIC GLASS. Acta Metall Sin, 2011, 47(4): 502-506.

Download:  PDF(777KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Gd36La20Al24Co20 bulk metallic glass (BMG) was prepared by copper-mold casting. The crystallization behavior and thermal stability of Gd36La20Al24Co20 during annealing under two temperatures in supercooled liquid region and the pressures ranging from ambient pressure to\linebreak 725 MPa were investigated by XRD and DSC. High pressure was found to retard the crystallization of Gd36La20Al24Co20 BMGs. The apparent activation energy of the crystallization, E, determined by Kissinger equation increases with increasing applied pressure. The relative mechanisms were analyzed appropriately.
Key words:  bulk metallic glass      preannealing under pressure      crystallization behavior      thermal stability     
Received:  04 January 2011     
ZTFLH: 

TG1 3 9

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50631010 and 50771006)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00001     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/502

[1] Inoue A. Mater Trans JIM, 1995; 36: 866

[2] Peker A, Johnson W L. Appl Phys Lett, 1993; 68: 2342

[3] Ling L Q, Eckert J, Loser W, Schultz L, Herlach D M. Philos Mag, 1999; 79A: 1095

[4] Schreres J, Wu Y, Busch R, Johnson W L. Acta Mater, 2001; 49: 2773

[5] Li C F, Saida J, Kiminami M, Inoue A. J Non–Cryst Solids, 2000; 261: 108

[6] Nagenda N, Ramamurity U, Goh T T, Li Y. Acta Mater, 2000; 48: 2603

[7] Yu G S, Lin J G, Mo M, Wang X F, Wang F H, Wen C E. Mater Sci Eng, 2007; A460: 58

[8] Jiang J Z, Zhou T J, Rasmussen H, Kuhn U, Eckert J, Lathe C. Appl Phys Lett, 2000; 77: 3553

[9] Wang Z X, Wang W H. J Phy: Condens Mater, 2003; 15: 5923

[10] Yao B, Hao Y Y, Wang A M, Guo W Q, Ding B Z, Liu H Z, Hu Z Q. J Non–Cryst Solids, 1996; 205–207: 554

[11] Lin S M. Master Dissertation, Beihang University, Beijing 2010

(林顺茂. 北京航空航天大学硕士学位论文, 2010)

[12] Liang L. Master Dissertation, University of Science and Technology Beijing, 2007

(梁亮. 北京科技大学硕士学位论文, 2007)

[13] Luo Q, Zhao D Q, Pan M X, Wang W H. Appl Phys Lett, 2006; 89: 081914

[14] Chen H S. Chem Phys, 1968; 48: 2560

[15] Kissinger H E. Res Nat Bur Stand, 1956; 57: 2712
[1] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[6] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[7] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[8] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[9] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[10] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[11] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[12] Yuanyuan ZHANG,Xin LIN,Lei WEI,Yongming REN. Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder[J]. 金属学报, 2017, 53(7): 824-832.
[13] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[14] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[15] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
No Suggested Reading articles found!