|
|
DISLOCATION CONFIGURATION IN DZ125 Ni-BASED SUPERALLOY AFTER HIGH TEMPERATURE STRESS RUPTURE |
DING Zhi, ZHANG Jun, WANG Changshuai, SU Haijun, LIU Lin, FU Hengzhi |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 |
|
Cite this article:
DING Zhi ZHANG Jun WANG Changshuai SU Haijun LIU Lin FU Hengzhi. DISLOCATION CONFIGURATION IN DZ125 Ni-BASED SUPERALLOY AFTER HIGH TEMPERATURE STRESS RUPTURE. Acta Metall Sin, 2011, 47(1): 47-52.
|
Abstract The influence of the melt superheating treatment on the dislocation configuration in the as-cast and heat-treated samples of DZ125 Ni-based superalloy after high temperature stress rupture is studied. The results show that with the increase of the melt superheating temperature, the stress rupture life of the as-cast sample is increased and that of the heat-treated sample is first increased and then reduced. When the superheating temperature is 1650℃, the stress rupture life of the heat-treated sample reaches the maximum. With the increase of the melt superheating temperature, the dislocation density is increased and the waved or irregular dislocation networks appear in the as-cast sample, while the regular polygonal dislocation networks appear in the heat-treated sample, which is helpful to elevate the stress rupture property. The Burgers vectors of dislocations in the network are respectively a/2<110> and a<100>. The high temperature stress rupture deformation mechanism is mainly shearing and climbing of dislocation. It is demonstrated that there are few dislocations shearing the γ' phase and there are dislocation arrays or pairs climbing over the γ' phase.
|
Received: 12 October 2010
|
Fund: Supported by National Natural Science Foundation of China (Nos.50931004 and 50827102), National Basic Research Program of China (Nos.2010CB631202 and 2011CB610406), and National High Technology Research and Development Program of China (No.2007AA03Z552) |
[1] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623[2] Shui L, Jin T, Tian S G, Hu Z Q. Mater Sci Eng, 2007; A454–455: 461[3] Mayr C, Eggeler G, Dlouhy A. Mater Sci Eng, 1996; A207: 51[4] Feller–Kniepmeier M, Link T. Mater Sci Eng, 1989; A113: 191[5] Kolbe M, Dlouhy A, Eggeler G. Mater Sci Eng, 1997; A246: 133[6] Probst–Hein M, Dlouhy A, Eggeler G. Acta Mater, 1999; 47: 2497[7] Srinivasan R, Eggeler G F, Mills M J. Acta Mater, 2000; 48: 2497[8] Zhang J X, Murakumo T, Koizumi Y. Harada H. J Mater Sci, 2003; 38: 4883[9] ZouMM, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 59(邹敏明, 张 军, 刘林, 傅恒志. 金属学报, 2008; 44: 59)[10] Wang C S, Zhang J, Liu L, Fu H Z. J Alloys Compd, 2010; 508: 440[11] Yin F S, Sun X F, Li Y B, Yu Y, Zheng Q, Guan H R, Hu Z Q. Acta Metall Sin, 2003; 39: 75(殷凤仕, 孙晓峰, 李耀彪, 于洋, 郑启, 管恒荣, 胡壮麒. 金属学报, 2003; 39: 75)[12] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Chin J Mater Res, 1999; 13: 632(田素贵, 周惠华, 张静华, 杨洪才, 徐永波, 胡壮麒. 材料研究学报, 1999; 13: 632)[13] Hong B D, Cui Y X. Material Electron Microscopy Analysis Technique. Harbin: Harbin Institute of Technology Press, 1990: 52(洪班德, 崔约贤. 材料电子显微分析技术. 哈尔滨: 哈尔滨工业大学出版社, 1990: 52)[14] Zhou L, Li S X, Wang Y C, Wang Z G. Acta Metall Sin, 2005; 44: 245(周丽, 李守新, 王跃臣, 王中光. 金属学报, 2005; 415: 245)[15] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2004; 40: 858(刘丽荣, 金涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2004; 40: 858)[16] Pollock T M, Argon A S. Acta Metall Mater, 1992; 40: 1[17] Milligan W, Antolovich D. Metall Trans, 1991; 22: 2309[18] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 44: 1215(刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215)[19] Sarosi P M, Srinivasan R, Eggeler G F, Nathal M V, Mills M J. Acta Mater, 2007; 55: 2509[20] Link T, Epishin A, Klaus M, Bruckner U, Reznicek A. Mater Sci Eng, 2005; A405: 254 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|