Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 53-60    DOI: 10.3724/SP.J.1037.2010.00369
论文 Current Issue | Archive | Adv Search |
CREEP BEHAVIOR OF Al-Cu-Mg-Ag HEAT-RESISTANT ALLOY AT ELEVATED TEMPERATURE
LIU Xiaoyan1),  PAN Qinglin1, 2),  LU Zhilun1), CAO Sufang1),  HE Yunbin1),  LI Wenbin1)
1) School of Materials Science and Engineering, Central South University, Changsha 410083
2) The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083
Cite this article: 

LIU Xiaoyan PAN Qinglin LU Zhilun CAO Sufang HE Yunbin LI Wenbin. CREEP BEHAVIOR OF Al-Cu-Mg-Ag HEAT-RESISTANT ALLOY AT ELEVATED TEMPERATURE. Acta Metall Sin, 2011, 47(1): 53-60.

Download:  PDF(1275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The creep behaviors of heat--resistant alloy Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr (Al-Cu-Mg-Ag) were studied in a temperature range of 100-210℃ and a load range of 150-300 MPa, and the effect of aging on the properties of Al-Cu-Mg-Ag alloy at elevated temperatures was also investigated. The results show that the steady creep rate of the under-aged alloy is much lower than that of the peak--aged alloy at the same creep conditions. The creep fracture time is 75 h for the under-aged Al-Cu-Mg-Ag alloy at 210℃/200 MPa, while that for the peak-aged alloy is only 21 h. The precipitates grow gradually during the creep process and the growth rate in the peak-aged alloy is higher than that in the under-aged alloy. Dynamic precipitation happened in the under-aged alloy. The fine precipitates inhibite the motion of the dislocations during the creep, which leads to lower creep deformation rate compared to the peak-aged alloy. The steady creep rates of the under-aged Al-Cu-Mg-Ag alloy at 100-150℃ keep a relatively lower level, but increases to a high level when the creep temperature increased to 180℃. The steady creep rate increased with increasing temperature or stress, which can be described by a constitutive equation with an apparent activation energy of 102 kJ/mol.
Key words:  Al-Cu-Mg-Ag alloy      creep      under-aged      steady creep rate     
Received:  23 July 2010     
ZTFLH: 

TG 146.21

 
Fund: 

Supported by Excellent Doctorate Dissertation Foundation of Central South University No.2008yb012)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00369     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/53

[1] Sukumaran K, Ravikumar K K, Pillai S G K, Rajan T P D, Ravi M, Pillai R M, Pai B C. Mater Sci Eng, 2008; A490: 235

[2] Naga R P, Srinivasa R K, Reddy G M, Kamaraj M, Prasad R K. Mater Sci Eng, 2007; A464: 192

[3] Wang J, Yi D, Su X, Yin F. Mater Charact, 2008; 59: 965

[4] Yu K, Li W, Li S, Zhao J. Mater Sci Eng, 2004; A368: 88

[5] Chang C H, Lee S L, Lin J C, Yeh M S, Jeng R R. Mater Chem Phys, 2005; 91: 454

[6] Xiao D H, Wang J N, Ding D Y, Chen S P. J Alloys Compd, 2002; 343: 77

[7] Bakavos D, Prangnell P B, Bes B, Eberl F. Mater Sci Eng, 2008; A491: 214

[8] Somi R A. Mater Des, 2008; 29: 763

[9] Lumley R N, Morton A J, Polmear I J. Acta Mater, 2002; 50: 3597

[10] Yan J L, Sun Y S, Xue F, Tao W J. Acta Metall Sin, 2008; 44: 1354

(晏井利, 孙扬善, 薛烽, 陶卫建. 金属学报, 2008; 44: 1354)

[11] Spigarelli S, Evangelista E, Cucchieri S. Mater Sci Eng, 2004; A387–389: 702

[12] Qi Y H, Guo J T, Cui C Y. Acta Metall Sin, 2001; 37: 957

(齐义辉, 郭建亭, 崔传勇. 金属学报, 2001; 37: 957)

[13] Kermanidis A T, Zervaki A D, Haidemenopoulos G N, Pantelakis Sp G. Mater Des, 2010; 31: 42

[14] Das G, Das M, Ghosh S, Dubey P, Ray A K. Mater Sci Eng, 2010; A527: 1590

[15] Xia Q K, Liu Z Y, Li Y T. Trans Nonferrous Met Soc China, 2008; 18: 789

[16] Seeger A T. Naturforschung, 1956; 9: 758

[17] Sha G Y, Han E H, Yu T, Xu Y B, Liu L, Gao G Z. Acta Metall Sin, 2003; 39: 1025

(沙桂英, 韩恩厚, 于 涛, 徐永波, 刘 路, 高国忠. 金属学报, 2003; 39: 1025)

[18] Li B Q, Wawner F E. Acta Mater, 1998; 46: 5483

[19] Mukherjee A K, Bird J E, Dorn J E. Trans ASM, 1969; 62: 155
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[7] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[8] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[9] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[10] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[11] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[12] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[13] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[14] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[15] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
No Suggested Reading articles found!