Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 47-52    DOI: 10.3724/SP.J.1037.2010.00544
论文 Current Issue | Archive | Adv Search |
DISLOCATION CONFIGURATION IN DZ125 Ni-BASED SUPERALLOY AFTER HIGH TEMPERATURE STRESS RUPTURE
DING Zhi, ZHANG Jun, WANG Changshuai, SU Haijun, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

DING Zhi ZHANG Jun WANG Changshuai SU Haijun LIU Lin FU Hengzhi. DISLOCATION CONFIGURATION IN DZ125 Ni-BASED SUPERALLOY AFTER HIGH TEMPERATURE STRESS RUPTURE. Acta Metall Sin, 2011, 47(1): 47-52.

Download:  PDF(1152KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of the melt superheating treatment on the dislocation configuration in the as-cast and heat-treated samples of DZ125 Ni-based superalloy after high temperature stress rupture is studied. The results show that with the increase of the melt superheating temperature, the stress rupture life of the as-cast sample is increased and that of the heat-treated sample is first increased and then reduced. When the superheating temperature is 1650℃, the stress rupture life of the heat-treated sample reaches the maximum. With the increase of the melt superheating temperature, the dislocation density is increased and the waved or irregular dislocation networks appear in the as-cast sample, while the regular polygonal dislocation networks appear in the heat-treated sample, which is helpful to elevate the stress rupture property. The Burgers vectors of dislocations in the network are respectively a/2<110> and a<100>. The high temperature stress rupture deformation mechanism is mainly shearing and climbing of dislocation. It is demonstrated that there are few dislocations shearing the γ' phase and there are dislocation arrays or pairs climbing over the γ' phase.
Key words:  melt superheating treatment      high temperature stress rupture life      dislocation configuration      Ni-based superalloy     
Received:  12 October 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50931004 and 50827102), National Basic Research Program of China (Nos.2010CB631202 and 2011CB610406), and National High Technology Research and Development Program of China (No.2007AA03Z552)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00544     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/47

[1] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623

[2] Shui L, Jin T, Tian S G, Hu Z Q. Mater Sci Eng, 2007; A454–455: 461

[3] Mayr C, Eggeler G, Dlouhy A. Mater Sci Eng, 1996; A207: 51

[4] Feller–Kniepmeier M, Link T. Mater Sci Eng, 1989; A113: 191

[5] Kolbe M, Dlouhy A, Eggeler G. Mater Sci Eng, 1997; A246: 133

[6] Probst–Hein M, Dlouhy A, Eggeler G. Acta Mater, 1999; 47: 2497

[7] Srinivasan R, Eggeler G F, Mills M J. Acta Mater, 2000; 48: 2497

[8] Zhang J X, Murakumo T, Koizumi Y. Harada H. J Mater Sci, 2003; 38: 4883

[9] ZouMM, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 59

(邹敏明, 张 军, 刘林, 傅恒志. 金属学报, 2008; 44: 59)

[10] Wang C S, Zhang J, Liu L, Fu H Z. J Alloys Compd, 2010; 508: 440

[11] Yin F S, Sun X F, Li Y B, Yu Y, Zheng Q, Guan H R, Hu Z Q. Acta Metall Sin, 2003; 39: 75

(殷凤仕, 孙晓峰, 李耀彪, 于洋, 郑启, 管恒荣, 胡壮麒. 金属学报, 2003; 39: 75)

[12] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Chin J Mater Res, 1999; 13: 632

(田素贵, 周惠华, 张静华, 杨洪才, 徐永波, 胡壮麒. 材料研究学报, 1999; 13: 632)

[13] Hong B D, Cui Y X. Material Electron Microscopy Analysis Technique. Harbin: Harbin Institute of Technology Press, 1990: 52

(洪班德, 崔约贤. 材料电子显微分析技术. 哈尔滨: 哈尔滨工业大学出版社, 1990: 52)

[14] Zhou L, Li S X, Wang Y C, Wang Z G. Acta Metall Sin, 2005; 44: 245

(周丽, 李守新, 王跃臣, 王中光. 金属学报, 2005; 415: 245)

[15] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2004; 40: 858

(刘丽荣, 金涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2004; 40: 858)

[16] Pollock T M, Argon A S. Acta Metall Mater, 1992; 40: 1

[17] Milligan W, Antolovich D. Metall Trans, 1991; 22: 2309

[18] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 44: 1215

(刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215)

[19] Sarosi P M, Srinivasan R, Eggeler G F, Nathal M V, Mills M J. Acta Mater, 2007; 55: 2509

[20] Link T, Epishin A, Klaus M, Bruckner U, Reznicek A. Mater Sci Eng, 2005; A405: 254
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[4] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[5] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[8] Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. 金属学报, 2018, 54(4): 566-574.
[9] Songsong HU,Lin LIU,Qiangwei CUI,Taiwen HUANG,Jun ZHANG,Hengzhi FU. CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2016, 52(8): 897-904.
[10] Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY[J]. 金属学报, 2016, 52(7): 851-858.
[11] Wen SUN,Xuezhi QIN,Jianting GUO,Langhong LOU,Lanzhang ZHOU. DEGENERATION PROCESS AND MECHANISM OF PRIMARY MC CARBIDES IN A CAST Ni-BASED SUPERALLOY[J]. 金属学报, 2016, 52(4): 455-462.
[12] Haifeng WANG,Haijun SU,Jun ZHANG,Taiwen HUANG,Lin LIU,Hengzhi FU. INFLUENCE OF MELT SUPERHEATING TREATMENT TEMPERATURE ON SOLUTE DISTRIBUTION BEHAVIOR OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2016, 52(4): 419-425.
[13] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[14] Kan SONG,Kai YU,Xin LIN,Jing CHEN,Haiou YANG,Weidong HUANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718[J]. 金属学报, 2015, 51(8): 935-942.
[15] Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT[J]. 金属学报, 2015, 51(8): 943-950.
No Suggested Reading articles found!