Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (11): 1347-1364    DOI: 10.3724/SP.J.1037.2010.00437
论文 Current Issue | Archive | Adv Search |
HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS
LU Shanping, DONG Wenchao, LI Dianzhong, LI Yiyi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LU Shanping DONG Wenchao LI Dianzhong LI Yiyi. HIGH EFFICIENCY WELDING PROCESS FOR STAINLESS STEEL MATERIALS. Acta Metall Sin, 2010, 46(11): 1347-1364.

Download:  PDF(2252KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The high efficiency tungsten inert gas (TIG) welding process has been developed, including active flux welding process, mixed shielded welding process and double shielded welding process, to increase the weld depth/width ratio (D/W$) of conventional TIG welding method. Compared to the active flux method, mixed shielding method can make penetration deeper and the industrialization can be realized easily due to the simplification in operation. Double shielded method can avoid the oxidation of tungsten electrode. The results of experiment and simulation show that the change of the Marangoni convection direction which arises from the adjustment of the oxygen content in the weld pool is one of the main factors contributing to the increase in TIG weld penetration, and the large D/W ratio can be obtained by adjusting the active element content in the liquid pool. High efficiency TIG welding process is not sensitive to welding parameters (welding speed, welding current and electrode gap) and therefore is suitable to be applied in industry easily.
Key words:  stainless steel      high efficiency welding process      active element      oxygen      Marangoni convection      weld pool shape     
Received:  30 August 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50874101)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00437     OR     https://www.ams.org.cn/EN/Y2010/V46/I11/1347

[1] Gurevich S M, Zamkov V N, Kushmienko N A. Avtom Svarka, 1965; 9: 1 [2] Gurevich S M, Zamkov V N. Avtom Svarka, 1966; 12: 13 [3] Ludwig H C. Weld J, 1968; 47: 234s [4] Lucas W, Howse D S. Weld Met Fabr, 1996; 64: 11 [5] Howse D S, Lucas W. Sci Technol Weld Joi, 2000; 15: 189 [6] Tanaka M, Shimizu T, Terasaki H, Ushio M, Koshi–ishi F, Yang C L. Sci Technol Weld Join, 2000; 5: 397 [7] Anderson P C J, Wiktorowicz R. Weld Met Fabr, 1996; 64: 108 [8] Paskell T, Lundin C, Castner H. Weld J, 1997; 76: 57s [9] Modenesi P J, Apolinario E R, Pereira I M. J Mater Proc Technol, 2000; 9: 260 [10] Kou M, Sun Z, Pan D. Sci Technol Weld Join, 2001; 6: 17 [11] Savitskii M M, Leskov G I. Avtom Svarka, 1980; 9: 17 [12] Lowke J J, Tanaka M, Ushio M. The 57th Annual Assembly of International Institute of Welding. Osaka, Japan, 2004, IIW Doc. 212–1053–04 [13] Heiple C R, Burgardt P. Weld J, 1985; 64: 159s [14] Heiple C R, Roper J R. Weld J, 1982; 61: 97s [15] Heiple C R, Roper J R, Stagner R T, Aden R J. Weld J, 1983; 62: 72s [16] Heiple C R, Roper J R. Weld J, 1981; 60: 143s [17] Leconte S, Paillard P, Chapelle P. Sci Technol Weld Join, 2006; 11: 389 [18] Leconte S, Paillard P, Chapelle P. Sci Technol Weld Join, 2007; 12: 120 [19] Lu S P, Fujii H, Sugiyama H, Nogi K. Metall Mater Trans, 2003; 34A: 1901 [20] Lu S P, Fujii H, Sugiyama H, Tanaka M, Nogi K. ISIJ Int, 2003; 43: 1590 [21] Lu S P, Fujii H, Nogi K. Scr Mater, 2004; 51: 271 [22] Lu S P, Fujii H, Nogi K. Sci Technol Weld Join, 2004; 9: 272 [23] Lu S P, Fujii H, Nogi K. Mater Sci Eng, 2004; A380: 290 [24] Lu S P, Fujii H, Nogi K. J Mater Sci Technol, 2006; 22: 359 [25] Lu S P, Fujii H, Nogi K, Sato T. Sci Technol Weld Join, 2007; 12: 689 [26] Lu S P, Fujii H, Nogi K. J Mater Sci Technol, 2010; 26: 170 [27] Wu C H, Hao D Q. Physical Chemistry. 1st Ed., Beijing: Machine Building Press, 1988: 138, 287 (吴长春, 郝德庆. 物理化学. 第一版, 北京: 机械工业出版社, 1988: 138, 287) [28] Kraus H G. Weld J, 1989; 68: 269s [29] Bad’yanov B N, Davdov V A, Ivanov V A. Avtom Svarka, 1974; 1: 11 [30] Bad’yanov B N. Avtom Svarka, 1975; 1: 74 [31] Palmer T A, DebRoy T. Weld J, 1996; 75: 197s [32] Sato Y, Dong W, Kokawa H, Kuwana T. ISIJ Int Suppl, 2000; 40: S20 [33] Wada H, Pehlke R D. Metall Trans, 1977; 8B: 675 [34] Dong W, Kokawa H, Sato Y, Tsukamoto S. Metall Mater Trans, 2003; 34B: 75 [35] Katz J D, Kiong T B. Metall Trans, 1989; 20B: 175 [36] Palmer T A, DebRoy T. Sci Technol Weld Join, 1998; 3: 190 [37] Zhu P Y, Lowke J J, Morrow R. J Phys, 1992; 25D: 1221 [38] Lowke J J, Kovitya P, Schmidt H P. J Phys, 1992; 25D: 1601 [39] Zhu P Y, Lowke J J, Morrow R, Haidar J. J Phys, 1995; 28D: 1369 [40] Lowke J J, Morrow R, Haidar J. J Phys, 1997; 30D: 2033 [41] Scott D A, Kovitya P, Haddad G N. J Appl Phys, 1989; 66: 5232 [42] McKelliget J, Szekely J. Metall Trans, 1986; 17A: 1139 [43] Bini R, Monno M, Boulos M I. J Phys, 2006; 39D: 3253 [44] Ushio M, Szekely J, Chang C W. Iron Steel, 1981; 6: 279 [45] Wu C S, Ushio M, Tanaka M. Compt Mater Sci, 1997; 7: 308 [46] Lu S P, Dong W C, Li D Z, Li Y Y. Compt Mater Sci, 2009; 45: 327 [47] Sahoo P, DebRoy T, McNallan M J. Metall Mater Trans, 1988; 19B: 483 [48] DongWC, Lu S P, Li D Z, Li Y Y. Acta Metall Sin, 2008; 44: 249 (董文超, 陆善平, 李殿中, 李依依. 金属学报, 2008; 44: 249) [49] Lu S P, Dong W C, Li D Z, Li Y Y. Sci Tech Weld Join, 2009; 14: 509 [50] Hsu K C, Etemadi K, Pfender E. J Appl Phys, 1983; 54: 1293 [51] Nestor O H. J Appl Phys, 1962; 33: 1638
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[6] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[7] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[8] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[9] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[10] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[11] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[14] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[15] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
No Suggested Reading articles found!