Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1237-1243    DOI: 10.3724/SP.J.1037.2010.00228
论文 Current Issue | Archive | Adv Search |
DETERMINATION AND APPLICATION OF CCT DIAGRAM FOR 6082 ALUMINUM ALLOY
LI Hongying 1, ZHAO Yankuo 1, TANG Yi 2, WANG Xiaofeng 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Institute of Pumping, SANY Heavy Industry Co., Ltd, Changsha, 410083
Cite this article: 

LI Hongying ZHAO Yankuo TANG Yi WANG Xiaofeng. DETERMINATION AND APPLICATION OF CCT DIAGRAM FOR 6082 ALUMINUM ALLOY. Acta Metall Sin, 2010, 46(10): 1237-1243.

Download:  PDF(1299KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrical resistance–temperature curves of 6082 aluminum alloy at various cooling rates during continuous cooling was obtained by in–situ resistance measurement. Phase transformation start and finish temperatures were ascertained by the slope change of resistance–temperature curves. Continuous cooling transformation (CCT) diagram for 6082 aluminum alloy was plotted. Microstructure evolution during cooling was examined by TEM observation to verify the validity of the CCT diagram. Applications of the CCT diagram were studied in this work. The results show that the CCT diagram obtained by in situ resistance measurement is credible. Resistance–temperature curves corresponding to different cooling rates depart from straight line to different directions. The phase transformation start and finish temperature decreases with the increase of cooling rates when the cooling rate is slow, but as the cooling rate increases to a certain rate the phase transformation start temperature increases suddenly and then decreases continously. Phase transformations mainly take place between 220 and 400 ℃. Critical cooling rate for preventing phase transformation is between 16—34 ℃/s. For plates 20 mm in thickness is proper to quench by 60 ℃ water. A step–quench process can be established by the tested CCT diagram to decrease quenching stress utmost and inhibit equilirium phase precipitation at the same time.
Key words:  6082 aluminum alloy      CCT diagram      in situ electrical resistance      phase transformation      cooling rate     
Received:  12 May 2010     
ZTFLH: 

TG151

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00228     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1237

[1] Fink W L, Willey L A. Trans. Am Inst Mining Metall Eng, 1974: 1 [2] Davydov V G, Ber L B, Kaputkin E Ya , Komov V I, Ukolova O G, Lukina E A, Mater Sci Eng A, 2000; 280: 76 [3] Archambault P, Godard D, Scripta Mater, 2000; 42:675 [4] Davydov V G, Ber LB, Mater Sci Forum, 2002; 396-402: 1169 [5] Liu S D, Zhong Q M, Zhang Y, Liu W J, Zhang X M, Deng Y L. Mater Des, 2010; 21:3116 [6] Herding T, Kessler O, Hoffmann F, Mayr P. Mater Sci Forum, 2002; 869: 396 [7] Kessler O, Von Bargen R, Hoffmann F, Zoch H W. Mater Sci Forum, 2006; 519-521: 1467 [8] Milkereita B, Kessler O, Schick C, Thermochim Acta, 2009; 492: 73 [9] Furlani A M,Stipcich M,Romero R. Mater Sci Eng A, 2005; 392: 386 [10] Teixeira J D C, Appolaire B, Aeby-Gautier E, Denis S, Cailletaud G, Spaeth N. Mater Sci Eng A, 2007; 448: 135 [11] Matsumoto H. J Alloys Compd. 2004; 368: 182 [12] Li H Y, Geng J F, Zheng Z Q, Wang C J, Su Y, Hu B. T Nonferr Metal Soc, 2006; 16: 1110 [13] Li H Y, Tang Y, Zeng Z D, Wang F.Y, Sun Y. Chin J Nonferrous Met, 2008; 18: 1613 (李红英,唐宜,曾再得,王法云,孙远. 中国有色金属学报, 2008; 18: 1613) [14] Li H Y, Wang X F, Tang Y, Deng Y Z, Huang Y, Sun Y, Wang F Y. Chin J Nonferrous Met, 2010; 20: 640 (李红英,王晓峰,唐宜,邓云喆,黄愉,孙远,王法云. 中国有色金属学报, 2010; 20: 640) [15] Li H, Pan D Z, Wang Z X, Zheng Z Q. Acta Metall Sin, 2010; 46: 494 (李海, 潘道召, 王芝秀, 郑子樵. 金属学报, 2010; 46: 494) [16] Fukui K, Takeda M, Endo T. Mater Lett, 2005; 59: 1444 [17] Zhang H, Li L X, Yuan D, Peng D S. Mater Charact, 2007; 58:168 [18] Morgeneyer T F, Starink M J, Wang S C, Sinclair I. Acta Mater, 2008; 56: 2872 [19] Long Y. Physical Properties of Materials. Changsha: Central South University Press, 2009: 58 (龙毅. 材料物理性能. 长沙: 中南大学出版社, 2009: 58)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[9] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[12] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[13] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[14] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
No Suggested Reading articles found!