CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER
DAN Tichun 1, LÜ Zhanpeng 2, WANG Jianqiu 1, HAN Enhou 1, SHOJI Testuo 2, KE Wei 1
1. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Fracture and Reliability Research Institute, Tohoku University, Sendai 980–8579, Japan
Cite this article:
DAN Tichun LU Zhanpeng WANG Jianqiu HAN Enhou SHOJI Testuo KE Wei. CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER. Acta Metall Sin, 2010, 46(10): 1267-1274.
Abstract Stress corrosion crack growth rates of alloy 690 thermally treated (TT) after one–directionally (1D) cold–rolling along the longitudinal (L) direction and three–directionally (3D) cold–rolling were successfully measured by ACPD technique in deoxygenated water with different dissolved hydrogen contents (CdH) at 340 ℃. The fracture mode is mainly intergranular mode in both two kinds of alloy 690TT. The crack growth rates in the T–L orientation are higher than those in the L–T orientation in 340 ℃deoxygenated environments. For 1D 25% alloy 690TT with T–L orientation, the measured average crack growth rate is 4.8×10−11 m/s in 340℃ water with CdH 30 μL/g, and the measured average crack growth rate is 1.1×10−10 m/s in 340 ℃ water with CdH 10 μL/g. The mechanism of crack growth is internal oxidation mechanism.
Supported by National Basic Research Program of China (No.G2006CB60500) and "Prediction of
Environmental Assisted Cracking Evaluation–E"(PEACE–E) Program of Japan
[1] Speidel M O, Magdowski R. 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Gold R E, Simonen E P.(1993): 361-371. [2] Moshier W C, Brown C M. Corrosion, 2000, Vol. 56(No. 3): 307-320. [3] Yamazaki S, Lu Z P, Ito Y, Takeda Y, Shoji T. Corros Sci, 2008, Vol. 50(2008): 835-846. [4] Rebak R B, Szklarska-Smialowska Z. Corros Sci, 1996, Vol. 38, No. 6(1996): 971-988. [5] Page R A, Mcminn A. Metall Trans A, 1986, Vol. 17A, No. 5(1986): 877-887. [6] Andresen P L, Hickling J, Ahluwalia A, Wilson J. Corrosion, 2008, Vol. 64(2008): 707-720. [7] Vaillant F, Mitheux J D, Bouvier O, Vancon D, Zacharie G, Brechet Y, Louchet F. 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Ford F P, Bruemmer S M, Was G S.(1999): 251-260 [8] Sui G, Titchmarsh J M, Heys G B, Congleton J. Corros Sci, 1997, Vol. 39(No. 3): 565-587. [9] Scenini F, Newman R C, Cottis R A, Jacko R J. 12th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Allen T R, King P J, Nelson L.(2005): 891-901 [10] Young B A, Gao X, Srivatsan T S, King P J. Materials and Design. 2007. Vol. 28: 373-379. [11] Lu Z, Shoji T, Takeda Y, Kai A, Ito Y. Corrosion. 2007. Vol. 63(No. 11): 1020-1032. [12] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S. Corros Sci, 2008, Vol. 50: 698-712. [13] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N. Corros Sci. 2008. Vol. 50: 625-638. [14] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Yamazaki S. Corros Sci, 2008, Vol. 50: 561-575. [15] Dan T C. PhD Thesis,Institute of Metal Research, Chinese Academy of Sciences, 2010. (但体纯. 中国科学院金属研究所博士论文,2010) [16] Shen Y, Shewmon P G. Metall Trans A, 1991, Vol. 22A, No. 8(1991): 1857-1864. [17] Arioka K, Yamada T, Terachi T, Miyamoto T. Corrosion, 2008, 64(9): 691-706. [18] Lu Z P, Shoji T, Dan T C, Qiu Y B, Yonezawa T. To be published on Corros Sci, 2010. [19] Moshier W C, Brown C M. Corrosion. 2000. 56(3): 307-320. [20] Shoji T, Lu Z P, Das N K, Murakami H, Takeda Y, Ismail T. Proceedings of PVP 2009: 2009 ASME Pressure Vessels and Piping Division Conference,edited by ASME.(2009): 1-20 [21] Marchetti L, Perrin S, Raquet O, Pijolat M. Materials Science Forum. 2008. Vols. 595-598: 529-537.