Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1267-1274    DOI: 10.3724/SP.J.1037.2010.00199
论文 Current Issue | Archive | Adv Search |
CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER
DAN Tichun 1, LÜ Zhanpeng 2, WANG Jianqiu 1, HAN Enhou 1, SHOJI Testuo 2, KE Wei 1
1. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Fracture and Reliability Research Institute, Tohoku University, Sendai 980–8579, Japan
Cite this article: 

DAN Tichun LU Zhanpeng WANG Jianqiu HAN Enhou SHOJI Testuo KE Wei. CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER. Acta Metall Sin, 2010, 46(10): 1267-1274.

Download:  PDF(3989KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stress corrosion crack growth rates of alloy 690 thermally treated (TT) after one–directionally (1D) cold–rolling along the longitudinal (L) direction and three–directionally (3D) cold–rolling were successfully measured by ACPD technique in deoxygenated water with different dissolved hydrogen contents (CdH) at 340 ℃. The fracture mode is mainly intergranular mode in both two kinds of alloy 690TT. The crack growth rates in the T–L orientation are higher than those in the L–T orientation in 340 ℃deoxygenated environments. For 1D 25% alloy 690TT with T–L orientation, the measured average crack growth rate is 4.8×10−11 m/s in 340℃ water with CdH 30 μL/g, and the measured average crack growth rate is 1.1×10−10 m/s in 340 ℃ water with CdH 10 μL/g. The mechanism of crack growth is internal oxidation mechanism.
Key words:  stress corrosion cracking (SCC)      crack growth      alternative current potential drop(ACPD)       high–temperature water     
Received:  26 April 2010     
Fund: 

Supported by National Basic Research Program of China (No.G2006CB60500) and "Prediction of
Environmental Assisted Cracking Evaluation–E"(PEACE–E) Program of Japan

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00199     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1267

[1] Speidel M O, Magdowski R. 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Gold R E, Simonen E P.(1993): 361-371.
[2] Moshier W C, Brown C M. Corrosion, 2000, Vol. 56(No. 3): 307-320.
[3] Yamazaki S, Lu Z P, Ito Y, Takeda Y, Shoji T. Corros Sci, 2008, Vol. 50(2008): 835-846.
[4] Rebak R B, Szklarska-Smialowska Z. Corros Sci, 1996, Vol. 38, No. 6(1996): 971-988.
[5] Page R A, Mcminn A. Metall Trans A, 1986, Vol. 17A, No. 5(1986): 877-887.
[6] Andresen P L, Hickling J, Ahluwalia A, Wilson J. Corrosion, 2008, Vol. 64(2008): 707-720.
[7] Vaillant F, Mitheux J D, Bouvier O, Vancon D, Zacharie G, Brechet Y, Louchet F. 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Ford F P, Bruemmer S M, Was G S.(1999): 251-260
[8] Sui G, Titchmarsh J M, Heys G B, Congleton J. Corros Sci, 1997, Vol. 39(No. 3): 565-587.
[9] Scenini F, Newman R C, Cottis R A, Jacko R J. 12th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Allen T R, King P J, Nelson L.(2005): 891-901
[10] Young B A, Gao X, Srivatsan T S, King P J. Materials and Design. 2007. Vol. 28: 373-379.
[11] Lu Z, Shoji T, Takeda Y, Kai A, Ito Y. Corrosion. 2007. Vol. 63(No. 11): 1020-1032.
[12] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S. Corros Sci, 2008, Vol. 50: 698-712.
[13] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N. Corros Sci. 2008. Vol. 50: 625-638.
[14] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Yamazaki S. Corros Sci, 2008, Vol. 50: 561-575.
[15] Dan T C. PhD Thesis,Institute of Metal Research, Chinese Academy of Sciences, 2010. (但体纯. 中国科学院金属研究所博士论文,2010)
[16] Shen Y, Shewmon P G. Metall Trans A, 1991, Vol. 22A, No. 8(1991): 1857-1864.
[17] Arioka K, Yamada T, Terachi T, Miyamoto T. Corrosion, 2008, 64(9): 691-706.
[18] Lu Z P, Shoji T, Dan T C, Qiu Y B, Yonezawa T. To be published on Corros Sci, 2010.
[19] Moshier W C, Brown C M. Corrosion. 2000. 56(3): 307-320.
[20] Shoji T, Lu Z P, Das N K, Murakami H, Takeda Y, Ismail T. Proceedings of PVP 2009: 2009 ASME Pressure Vessels and Piping Division Conference,edited by ASME.(2009): 1-20
[21] Marchetti L, Perrin S, Raquet O, Pijolat M. Materials Science Forum. 2008. Vols. 595-598: 529-537.
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[3] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[4] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[5] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[6] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[7] YAN Maocheng, WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei. CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING[J]. 金属学报, 2014, 50(9): 1137-1145.
[8] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[9] HAO Wenkui,LIU Zhiyong,LI Xiaogang,DU Cuiwei. STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS[J]. 金属学报, 2013, 49(7): 881-889.
[10] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[11] LIU Zhiyong WANG Changpeng DU Cuiwei LI Xiaogang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2011, 47(11): 1434-1439.
[12] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[13] MA Yingjie LI Jinwei LEI Jiafeng TANG Zhenyun LIU Yuyin YANG Rui. INFLUENCES OF MICROSTRUCTURE ON FATIGUE CRACK PROPAGATING PATH AND CRACK GROWTH RATES IN TC4ELI ALLOY[J]. 金属学报, 2010, 46(9): 1086-1092.
[14] ZHAO Xianwu CHU Wuyang QIAO Lijie. SUB–CRITICAL CRACK GROWTH IN AIR AND DOMAIN SWITCHING FOR BaTiO3 SINGLE CRYSTAL UNDER CONSTANT DEFLECTION[J]. 金属学报, 2010, 46(2): 167-171.
[15] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
No Suggested Reading articles found!