Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1434-1439    DOI: 10.3724/SP.J.1037.2011.00046
论文 Current Issue | Archive | Adv Search |
EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION
LIU Zhiyong, WANG Changpeng, DU Cuiwei, LI Xiaogang
1) Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
2) Key Lab of Corrosion, Erosion and Surface Technique of Beijing, Beijing 100083
Cite this article: 

LIU Zhiyong WANG Changpeng DU Cuiwei LI Xiaogang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION. Acta Metall Sin, 2011, 47(11): 1434-1439.

Download:  PDF(2767KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stress corrosion cracking (SCC) of X80 pipeline steel in a simulated solution of the acidic soil environments in Yingtan China was studied by means of potentiodynamic polarization curves, slow strain rate test (SSRT) and corrosion morphologies characterized by SEM. The results show that X80 pipeline steel has high SCC susceptibility in the simulated solution and the failure mode is transgranular cracking. The SCC mechanism would vary with the applied cathodic potential. When the applied potential is positive to about -930 mV, the SCC behavior is controlled by the combined effect of anodic dissolution (AD) and hydrogen embrittlement (HE), i.e. the SCC mechanism is AD+HE. However, when the applied potentials are lower than -930 mV, such as -1000 and -1200 mV,  the process of hydrogen evolution plays the dominant role in SCC occurrence, meaning that the SCC mechanism is HE under such applied potentials. Moreover, SCC susceptibility increases with decreasing applied cathodic potential. Compared with X70 pipeline steel in acidic soil environments, HE plays a more important role in affecting SCC occurrence.
Key words:  X80 pipeline steel      stress corrosion cracking (SCC)      applied cathodic potential      soil environment     
Received:  19 January 2011     
ZTFLH: 

TG172.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50901041) and the Fundamental Research Funds for the Central Universities (No.FRF-TP-09-029B)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00046     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1434

[1] Liu Z Y, Li X G, Du C W, Zhai G L, Cheng Y F. Corros Sci, 2008; 50: 2251

[2] Zhai G L, Liu Z Y, Du C W, Li X G, Wang L X. Corros Prot, 2009; 30: 149

(翟国丽, 刘智勇, 杜翠薇, 李晓刚, 王立贤. 腐蚀与防护, 2009; 30: 149)

[3] L¨u X Y, Wang Y, Li J C. Electr Weld Machine, 2009; 39(5): 121

(吕向阳, 王义, 李景昌. 电焊机, 2009; 39(5): 121)

[4] Liang P, Du C W, Li X G, Chen X, Zhang L. Int J Miner, Metall Mater, 2009; 16: 407

[5] Gu B, Luo J L, Mao X. Corrosion, 1999; 55: 96

[6] Gu B, Yu W Z, Luo J L,Mao X. Corrosion, 1999; 55: 312

[7] Wang B Y, Huo L X, Wang D P, Deng C Y. J Tianjin Univ, 2007; 40: 757

(王炳英, 霍立兴, 王东坡, 邓彩艳. 天津大学学报, 2007; 40: 757)

[8] Su D L, Feng Y, Chen J B. Mechanical Properties of Engineering Materials. Beijing: China Machine Press, 2005: 1

(束德林, 凤 仪, 陈九磅. 工程材料力学性能. 北京: 机械工业出版社, 2005: 1)

[9] Chu W Y, Qiao L J, Chen Q Z. Fault Rupture and the Environment. Beijing: Science Press, 2000: 109

(禇武扬, 乔利杰, 陈奇志. 断裂与环境断裂. 北京: 科学出版社, 2000: 109)

[10] Ogundele G I, White W E. Corrosion, 1986; 42: 71

[11] Zhang L F. J Iron Steel Res Int, 2006; 13(3): 01

[12] Garet M, Brass A M, Haut C, Solana F G. Corros Sci, 1998; 40: 1073

[13] Parkins R N. Corros Sci, 1980; 20: 147

[14] Liu Z Y, Li X G, Du C W, Zhai G C, Cheng Y F. Corros Sci, 2008; 50: 2251

[15] Cheng Y F, Niu L. Electrochem Commun, 2007; 9: 558

[16] Chen W, Fang K, Vokes E. Corrosion, 2002; 58: 267

[17] Liu Z Y, Zhai G L, Du C W, Li X G. Acta Metall Sin, 2008; 44: 209

(刘智勇, 翟国丽, 杜翠薇, 李晓刚. 金属学报, 2008; 44: 209)

[18] Liu Z Y, Li X G, Du C W, Lu L, Zhang Y R, Cheng Y F. Corros Sci, 2009; 51: 895
[1] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[2] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[3] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[4] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[5] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[6] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[7] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[8] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[9] YAN Maocheng, WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei. CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING[J]. 金属学报, 2014, 50(9): 1137-1145.
[10] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[11] HAO Wenkui,LIU Zhiyong,LI Xiaogang,DU Cuiwei. STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS[J]. 金属学报, 2013, 49(7): 881-889.
[12] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
[13] WANG Xinhua, LI Xiugang, LI Qiang, HUANG Fuxiang,LI Haibo, YANG Jian. CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES[J]. 金属学报, 2013, 49(5): 553-561.
[14] DENG Wei GAO Xiuhua QIN Xiaomei GAO Xin ZHAO Dewen DU Linxiu. EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS[J]. 金属学报, 2010, 46(8): 959-966.
[15] CHEN Xu WU Ming HE Chuan XIAO Jun. EFFECT OF APPLIED POTENTIAL ON SCC OF X80 PIPELINE STEEL AND ITS WELD JOINT IN KU’ERLE SOIL SIMULATED SOLUTION[J]. 金属学报, 2010, 46(8): 951-958.
No Suggested Reading articles found!