Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 830-836    DOI: 10.3724/SP.J.1037.2012.00226
论文 Current Issue | Archive | Adv Search |
MORPHOLOGICAL CHANGES BEHAVIOR OF FAN-TYPE STRUCTURES OF γ' PRECIPITATES IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS
HU Benfu1), LIU Guoquan1, 2), WU Kai1),  HU Penghui1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

HU Benfu LIU Guoquan WU Kai HU Penghui. MORPHOLOGICAL CHANGES BEHAVIOR OF FAN-TYPE STRUCTURES OF γ' PRECIPITATES IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS. Acta Metall Sin, 2012, 48(7): 830-836.

Download:  PDF(5041KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The variety and complexity of γ'  phase morphological changes in heat treatment process of nickel-based powder metallurgy (P/M) superalloy, which contains high volume percentage γ'  strengthening phase, is one of hot issues which material researchers focused on. γ'  phase morphological changes have important effect on the strength, toughness, high-temperature creep and fatigue property of alloy. Based on the research of heat treameat process in the thirdly nickel-based P/M superalloy (FGH98I), the researcher find that there are γ'  fan-structure in solution heat treatment at different cooling rates, and follow-up treatment have obvious influence on γ'  fan-structure morphology. Therefore, it is necessary to research scientifically and penetratingly on the formation conditions, formation mechanism, and the effects of different heat treatment process of γ'  fan-structure which exist as a kind of special organization morphology. The formation and evolution of fan-type structure in a new type nickel-based P/M superalloy FGH98I was studied by means of FESEM and TEM. The results show that the fan-type structure in alloy FGH98I consists of finger-shaped γ'  dendrites and the $\gamma$ matrix between them. It forms only in a selection area characteristic, nucleates inhomogeneously in the chemical segregation area at different scales on highly supersaturated grain boundary and develops by own concentration gradient diffusion. The standard aging makes the fan-type structure growing up and coarsening. The γ'  fingers become unstable, transforming into stable cubic shape γ'  in low-energy state after high-temperature aging.
Key words:  nickel-based powder metallurgy superalloy      fan-type structure      cooling rate      aging treatment     
Received:  24 April 2012     
ZTFLH: 

TF125.2

 
Fund: 

;High Technology Research and Development Program of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00226     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/830

[1] KaufmanM J, Voorhees PW, JohnsonWC, Biancanniello F S. Metall Trans, 1989; 20A: 2171

[2] Calderon H A, Kostorz G, Qu Y Y, Dorantes H J, Cruz J J, Cabanas–Moreno J G. Mater Sci Eng, 1997; A238: 13

[3] Minoru D, Toru M, Teruyaki W. Mater Sci Eng, 1984; A67: 249

[4] Via P C, Yu J J. Trans Nonferrous Met Soc China, 2005; 15(93): 90

[5] Jackson J J, Donachie M J. Metall Trans, 1977; 8A: 1615

[6] Larson J M, Volin T G, Larson F G. In: Braun J D, Arrowsmith H W, McCall J L, eds., Microstruct Sci, 1997; 5: 209

[7] Furrer D U. Scr Mater, 1999; 40: 1215

[8] Furrer D U. In: CSM, BISC, eds., Proc 11th Int Symposium on Advanced Superalloys–Production and Application, Shanghai: the Chinese Society for Metals, 2007: 192

[9] Mitchell R J, Li H Y, Huang Z W. J Mater Process Technol, 2009; 209: 1011

[10] Lu X D, Deng Q, Du J H, Qu J L, Zhuang J Y, Zhong Z Y. J Alloys Compd, 2009; 477: 100

[11] Lu X D, Du J H, Deng Q, Zhong Z Y. J Alloys Compd, 2009; 486: 195

[12] Wu K, Liu G Q, Hu B F. J Univ Sci Technol Beijing, 2009; 31: 722

[13] Lemsky J. NASA/CR–2004–212950

[14] Gabb T P, Gayda J. NASA/TM–2005–213649

[15] Hamid A, Schroers J. Acta Mater, 2002; 50: 89

[16] Staron P, Kampmann R. Acta Mater, 2000; 48: 701

[17] Williams D B, Butler E P. Int Mater Rev, 1981, 26: 153

[18] Staron P, Kampmann R. Acta Mater, 2000; 48: 713

[19] Mitchell R J, Preuss M. Mater Sci Eng, 2008; A473: 158

[20] Doi M, Miyazaki T. Mater Sci Eng, 1985; 74: 139

[21] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35

[22] Wagner C. Z Electrochem, 1961; 65: 581
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[5] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[6] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[9] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[10] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
[11] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[12] Xiaofeng HU,Yubin DU,Desheng YAN,Lijian RONG. Cu Precipitation and Its Effect on Damping Capacity and Mechanical Properties of FeCrMoCu Alloy[J]. 金属学报, 2017, 53(5): 601-608.
[13] Shaojun LIU, Guangyu YANG, Wanqi JIE. SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY[J]. 金属学报, 2015, 51(5): 580-586.
[14] LIU Fenjun, FU Li, ZHANG Wenyuan, MENG Qiang, DONG Chunlin, LUAN Guohong. INTERFACE STRUCTURE AND MECHANICAL PRO-PERTIES OF FRICTION STIR WELDING JOINT OF 2099-T83/2060-T8 DISSIMILAR Al-Li ALLOYS[J]. 金属学报, 2015, 51(3): 281-288.
[15] Juan MU,Dongmei WANG,Yandong WANG. EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES[J]. 金属学报, 2015, 51(12): 1435-1440.
No Suggested Reading articles found!