Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 850-856    DOI: 10.3724/SP.J.1037.2010.00036
论文 Current Issue | Archive | Adv Search |
EVOLUTION OF NANOSCALE Al3(ZrxEr1-x) PRECIPITATES IN Al-6Mg-0.7Mn-0.1Zr-0.3Er ALLOY ALLOY DURING ANNEALING
Gong Bo, WEN Shengping, HUANG Hui, NIE Zuoren
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article: 

Gong Bo WEN Shengping HUANG Hui NIE Zuoren. EVOLUTION OF NANOSCALE Al3(ZrxEr1-x) PRECIPITATES IN Al-6Mg-0.7Mn-0.1Zr-0.3Er ALLOY ALLOY DURING ANNEALING. Acta Metall Sin, 2010, 46(7): 850-856.

Download:  PDF(910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Erbium (Er) has attracted considerable attention as a substitute to scandium (Sc) for microalloying. The solid solution of Er and Zr decomposes to form a dispersion of secondary Al3(ZrxEr1-x) during annealing. This secondary Al3(ZrxEr1-x) precipitates improve strength, especially the elevated temperature strength. In the present paper we investigate the evolution of Al3(ZrxEr1-x) precipitate during annealing by transmission electron microscopy (TEM). The Al3(ZrxEr1-x) precipitates nucleate homogeneously at lower temperatures (280℃ and 470 ℃). The transition from homogeneous to heterogeneous nucleation at higher aging temperature (510℃) is a natural consequence of the reduced driving force for nucleus formation as the temperature increases and the Er supersaturation in the α-Al matrix decreases. The change in morphology of the Al3(ZrxEr1-x) precipitates from faceted to approximately spheroidal is associated with a change in the value of interfacial free energies. The diameter and the ratio of Zr/Er increase with increasing aging time at constant temperature. The coarsening of Al3(ZrxEr1-x) is dependent on the diffusivity of Er, Zr in α-Al.

Key words:  annealing      Al3(ZrxEr1-x)       coarsening     
Received:  19 January 2010     
Fund: 

Supported by High Technology Research and Development Program of China (Nos.2006AA03A207 and 2007AA03Z514)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00036     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/850

[1] Hecht R, Kannan K, Ghosh A K, Bieler T R. Superplasticity and Superplastic Forming. Warredale, PA: TMS, 1995: 259
[2] Kaibyshev R, Musin F, Lesuer D R, Nieh T G. Mater Sci Eng, 2003; A342: 169
[3] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and It’s Processing. Changsha: Central South University of Technology Press, 1989: 151
(王祝堂, 田荣璋. 铝合金及其加工手册. 长沙: 中南工业大学出版社. 1989: 151)
[4] Norman A F, Prangnell P B, Mcewen R S. Acta Mater, 1998; 46: 5715
[5] Filatov Yu A, Yelagin V I, Zakharov V V. Mater Sci Eng, 2000; A280: 97
[6] Lathabai S, Lloyd P G. Acta Mater, 2002; 50: 4275
[7] Jones M J, Humphreys F J. Acta Mater, 2003; 51: 2149
[8] Nie Z R, Jin T N, Fu J B, Xu G F, Yang J J, Zhou J. Mater Sci Forum, 2002; 396–402: 1731
[9] Nie Z R, Jin T N, Zou J X, Fu J B, Yang J J, Zuo T Y. Trans Nonferrous Met Soc China, 2003; 13: 509
[10] Yang J J, Nie Z R, Jin T N, Ruan H Q, Zuo T Y. Chin J Nonferrous Met, 2004; 14: 620
(杨军军, 聂祚仁, 金头男, 阮海琼, 左铁镛. 中国有色金属学报, 2004; 14: 620)
[11] Xu G F, Yang J J, Jin T N, Nie Z R, Yin Z M. Chin J Nonferrous Met, 2006; 16: 768
(徐国富, 杨军军, 金头男, 聂祚仁, 尹志民. 中国有色金属学报, 2006; 16: 768)
[12] Kendig K L, Miracle D B. Acta Mater, 2002; 50: 4165
[13] Marquies E A, Seidman D N. Acta Mater, 2001; 49: 1909
[14] Yin Z M, Jiang F, Pan Q L. Trans Nonferrous Met Soc China, 2003; 13: 515
[15] Karnesky R A, Dunand D C, Seidman D N. Acta Mater, 2009; 57: 4022
[16] van Dalen M E, Karnesky R A, Cabotaje J R, Dunand D C, Seidman D N. Acta Mater, 2009; 57: 4081
[17] Lin S P, Huang H, Wen S P, Nie Z R. Acta Metall Sin, 2009; 45: 978
(林双平, 黄 晖, 文胜平, 聂祚仁. 金属学报, 2009; 45: 978)
[18] Radmilovic V, Tolley A, Marquis E A, Rossell M D, Lee Z, Dahmen U. Scr Mater, 2008; 58: 529
[19] Wagner R, Kampmann R, Voorhees P. Homogeneous Second—Phase Precipitation, Phase Transformations in Materials. New York: Wiley–VCH, 2001: 309
[20] Thompson M E, Su C S, Voorhees P W. Acta Mater, 1994; 42: 2107
[21] Marquis E A, Seidman D N. Acta Mater, 2005; 53: 4259
[22] Fuller C B, Seidman D N. Acta Mater, 2005; 53: 5415
[23] Robson J D, Prangnell P B. Acta Mater, 2001; 49: 599

[1] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[6] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[7] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[8] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[9] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[10] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[11] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[12] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[13] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[14] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[15] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
No Suggested Reading articles found!