Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (3): 282-287    DOI: 10.3724/SP.J.1037.2009.00643
论文 Current Issue | Archive | Adv Search |
A TRAINING-FREE CAST Fe-Mn-Si-Cr-Ni SHAPE MEMORY ALLOY BASED ON FORMATION OF MARTENSITE IN A DOMAIN MANNER I. Idea and realization
PENG Huabei; LIU Gang; WEN Yuhua; SUN Panpan; LI Ning
College of Manufacturing Science and Engineering; Sichuan University; Chengdu 610065
Cite this article: 

PENG Huabei LIU Gang WEN Yuhua SUN Panpan LI Ning. A TRAINING-FREE CAST Fe-Mn-Si-Cr-Ni SHAPE MEMORY ALLOY BASED ON FORMATION OF MARTENSITE IN A DOMAIN MANNER I. Idea and realization. Acta Metall Sin, 2010, 46(3): 282-287.

Download:  PDF(888KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low cost Fe-Mn-Si based shape memory alloys (SMAs) has not got widely applications because of their poor shape memory effect (SME) and the need of thermo-mechanical training, so developing training-free Fe-Mn-Si based SMAs with high memory property is significant. In the present study, it was put forth that the formation of stress-induced ε martensite in a domain manner could improve the SME of Fe-Mn-Si based SMAs and it could be realized through subdividing austenite γ grains into smaller domains using the residual lathy δ ferrite phase. According to Hammar's equivalents, a cast Fe-18Mn-5.5Si-9.5Cr-4Ni alloy with Cr/Ni equivalent ratio of 1.85 was prepared. OM and VSM (vibrating sample magnetometer) examination showed that the as-cast microstructure consists of γ austenite and lathy δ ferrite phase, and the lathy δ ferrite subdivided the austenite grains into smaller domains, which makes the stress-induced ε martensite bands form in a domain manner. Because the collisions between domain-like martensite bands were reduced, a high recovery strain of 4.9% was attained in the as-cast Fe-18Mn-5.5Si-9.5Cr-4Ni alloy. This result provides a novel way of developing training-free Fe-Mn-Si based SMAs. It can be expected that the SME of cast Fe-Mn-Si based SMAs will be further improved through modifying and optimizing alloy compositions, solidification parameters and heat treatment process.

Key words:  Fe-Mn-Si-Cr-Ni shape memory alloy      training-free      cast      &delta      ferrite     
Received:  24 September 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50501015 and 50871072) and Program for New Century Excellent Talents in University (No.NCET-06-0793)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00643     OR     https://www.ams.org.cn/EN/Y2010/V46/I3/282

[1] Sato A, Chishima E, Soma K, Mori T. Acta Metall Mater, 1982; 30: 1177
[2] Sato A, Chishima E, Soma K, Mori T. Acta Metall Mater, 1984; 32: 539
[3] Sato A, Yamaji Y, Mori T. Acta Metall Mater, 1986; 34: 287
[4] Otsuka H, Yamada H, Maruyama T, Tanahashi H, Matsuda S, Murakami M. ISIJ Int, 1990; 30: 674
[5] Yang J H, Chen H, Wayman C M. Metall Mater Trans, 1992; 23A: 1431
[6] Inagaki H. Z Metall, 1992; 83: 90
[7] Wang X X, Zhao L C. Scr Mater Metall, 1992; 26: 1451
[8] Wang D F, Chen Y R, Gong F Y, Liu D Z, Liu W X. J Phys France IV, 1995; 5: 527
[9] Kajiwara S. Mater Sci Eng, 1999; A273–275: 67
[10] Matsumura O, Furusako S, Sumi T, Furukawa T, Otsuka H. Mater Sci Eng, 1999; A272: 459
[11] Sato A, Masuya T, Morishita M, Kumai S, Inoue A. Mater Sci Forum, 2000; 327–328: 223
[12] Wang D F, Liu D Z, Dong Z Z, Liu W X, Chen J M. Mater Sci Eng, 2001; A315: 174
[13] Wen Y H, Yan M, Li N. Scr Mater, 2004; 50: 835
[14] Wen Y H, Yan M, Li N. Scr Mater, 2004; 50: 441
[15] Baruj A, Kikuchi T, Kajiwara S, Shinya N. Mater Sci Eng, 2004; A378: 333
[16] Farjami S, Hiraga K, Kubo H. Acta Mater, 2005; 53: 419
[17] Wen Y H, Zhang W, Li N. Acta Metall Sin, 2006; 42: 1217
(文玉华, 张伟, 李宁. 金属学报, 2006; 42: 1217)
[18] Wen Y H, Zhang W, Li N, Peng H B, Xiong L R. Acta Mater, 2007; 55: 6526
[19] Wen Y H, Xiong L R, Li N, Zhang W. Mater Sci Eng, 2008; A474: 60
[20] Yang J H, Wayman C M. Acta Metall Mater, 1992; 40: 2011
[21] Inagaki H. Z Metall, 1992; 83: 97
[22] Inagaki H. Z Metall, 1992; 83: 304
[23] Suutala N, Takalo T, Moisio T. Metall Mater Trans, 1979; 10A: 512
[24] Leone G L, Kerr H W. Weld J, 1982; 61: 13
[25] Suutala N. Metall Mater Trans, 1982; 13A: 2121
[26] Stanford N, Dunne D P. J Mater Sci, 2006; 41: 4883
[27] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 77
[28] Gu Q, Humbeeck J V, Delaey L. J Phys France IV, 1994; 4: 135
[29] Folkhard E. Welding Metallurgy of Stainless Steel. Wien: Springer–Verlag, 1988: 39

[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[3] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[4] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[5] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[6] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[7] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[9] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[10] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[12] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[13] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[14] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[15] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
No Suggested Reading articles found!