EFFECT OF HEAT TREATMENT ON TRANSFORMATION BEHAVIOR OF LOW-TEMPERATURE SUPERELASTICITY ALLOY Ti-50.8Ni-0.3Cr
HE Zhirong; WANG Fang
1) School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723003
2) Library; Shaanxi University of Technology; Hanzhong 723003
Cite this article:
HE Zhirong WANG Fang. EFFECT OF HEAT TREATMENT ON TRANSFORMATION BEHAVIOR OF LOW-TEMPERATURE SUPERELASTICITY ALLOY Ti-50.8Ni-0.3Cr. Acta Metall Sin, 2010, 46(3): 329-333.
The effects of annealing and aging processes on transformation behavior of the low-temperature superelasticity alloy Ti-50.8Ni-0.3Cr (atomic fraction, %) were investigated with differential scanning calorimetry. The A→R/R→A (A-parent phase, R-R phase) type reversible transformation occurred in the 350-450 ℃ annealed alloy upon cooling/heating, the A→R→M/M→R→A (M-martensite) type occurred in the 500 ℃ annealed alloy, the A→R→M/M→A type occurred in 550-600 ℃ annealed alloy, and no transformation occurred in the above 650 ℃ annealed alloy. The effect of the annealing time on transformation behavior of the alloy is not serious. With increasing aging time tag, the transformation type of 300 ℃ aged alloy still is A→R/R→A, the one of 400 ℃ aged alloy changes from A→R/R→A to A→R→M/M→R→A, and the one of 500 ℃ aged alloy changes from A→R→M / M→R→A to A→R→M/M→A. With increasing annealing temperature, the R transformation temperature (δR) of the alloy increases first and then decreases, the M transformation temperature (δM) increases, and the M temperature hysteresise (ΔδM) decreases. After aging at 300-500 ℃, the δR400>δR300>δR500. With increasing tag, the δR and δM increase fast first and then tend to stable, and the ΔδM decreases fast first and then tends to stable. The R temperature hysteresises in both the annealed and aged alloys are about 4 ℃.
Supported by Natural Science Foundation of Shaanxi Province (No.2009JM6010) and Special Scientific esearch program Founded by Shaanxi Provicial Education epartment (No.09JK375)
[1] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and uperelasticity in Alloys. Beijing: Defense Industry Press, 002: 5
(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京: 国防工业出版社, 2002: 5)
[2] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: ambridge University Press, 1998: 58
[3] He Z R, Zhou J E, Miyazaki S. Acta Metall Sin, 2003; 39: 17
(贺志荣, 周敬恩, 宫崎修一. 金属学报, 2003; 39: 617)
[4] Hosoda H, Wakashima K, Miyazaki S, Inoue K. Mater Res Soc Symp Proc, 2005; 842: 353
[5] Choi M S, Ogawa J, Fukuda T, Kakeshita T. Mater Sci Eng, 2006; A438–440: 527
[6] Kishi Y, Yajima Z, Shimizu K, Morii K. J Phys IV, 2001; 11(8): 101
[7] Si N C, Zhang Z M. Rare Met Mater Eng, 2008; 37: 185
(司乃潮, 张志敏. 稀有金属材料与工程, 2008; 37: 185)
[8] Sia N N, Jeom Y C. Acta Mater, 2005; 53: 449
[9] Chen S L, Hsieh S F, Lin H C, Lin M H, Huang J S. Mater Sci Eng, 2007; A445–446: 486
[10] Jeom Y C, Sia N N. Mater Sci Eng, 2006; A432: 100
[11] Uchil J, Kumara K G, Mahesh K K. J Alloys Compd, 2001; 325: 210
[12] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293
(贺志荣, 王芳, 王永善, 夏鹏举, 杨 波. 金属学报, 2007; 43: 1293)
[13] He Z R. Acta Metall Sin, 2007; 43: 163
(贺志荣. 金属学报, 2007; 43: 163)
[14] Vaidynathan R, Bourke M A M, Dunand D C. Metall Mater Trans, 2001; 32A: 777
[15] Miyazaki S, Otsuka K. Metall Trans, 1986; 17A: 53
[16] Kim J I, Miyazaki S. Acta Mater, 2005; 53: 4545