Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (3): 329-333    DOI: 10.3724/SP.J.1037.2009.00554
论文 Current Issue | Archive | Adv Search |
EFFECT OF HEAT TREATMENT ON TRANSFORMATION BEHAVIOR OF LOW-TEMPERATURE SUPERELASTICITY ALLOY Ti-50.8Ni-0.3Cr
HE Zhirong; WANG Fang
1) School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723003 2) Library; Shaanxi University of Technology; Hanzhong 723003
Cite this article: 

HE Zhirong WANG Fang. EFFECT OF HEAT TREATMENT ON TRANSFORMATION BEHAVIOR OF LOW-TEMPERATURE SUPERELASTICITY ALLOY Ti-50.8Ni-0.3Cr. Acta Metall Sin, 2010, 46(3): 329-333.

Download:  PDF(917KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of annealing and aging processes on transformation behavior of the low-temperature superelasticity alloy Ti-50.8Ni-0.3Cr (atomic fraction, %) were investigated with differential scanning calorimetry. The A→R/R→A (A-parent phase, R-R phase) type reversible transformation occurred in the 350-450 ℃ annealed alloy upon cooling/heating, the A→R→M/M→R→A (M-martensite) type occurred in the 500 ℃ annealed alloy, the A→R→M/M→A type occurred in 550-600 ℃ annealed alloy, and no transformation occurred in the above 650 ℃ annealed alloy. The effect of the annealing time on transformation behavior of the alloy is not serious. With increasing aging time tag, the transformation type of 300 ℃ aged alloy still is A→R/R→A, the one of 400 ℃ aged alloy changes from A→R/R→A to A→R→M/M→R→A, and the one of 500 ℃ aged alloy changes from A→R→M / M→R→A to A→R→M/M→A. With increasing annealing temperature, the R transformation temperature (δR) of the alloy increases first and then decreases, the M transformation temperature (δM) increases, and the M temperature hysteresise (ΔδM) decreases. After aging at 300-500 ℃, the δR400>δR300>δR500. With increasing tag, the δR and δM increase fast first and then tend to stable, and the ΔδM decreases fast first and then tends to stable. The R temperature hysteresises in both the annealed and aged alloys are about 4 ℃.

Key words:  Ti-50.8Ni-0.3Cr alloy      hape memory effect      uperelasticity      ransformation     
Received:  24 August 2009     
Fund: 

Supported by Natural Science Foundation of Shaanxi Province (No.2009JM6010) and Special Scientific esearch program Founded by Shaanxi Provicial Education epartment (No.09JK375)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00554     OR     https://www.ams.org.cn/EN/Y2010/V46/I3/329

[1] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and uperelasticity in Alloys. Beijing: Defense Industry Press, 002: 5
(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京: 国防工业出版社, 2002: 5)

[2] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: ambridge University Press, 1998: 58
[3] He Z R, Zhou J E, Miyazaki S. Acta Metall Sin, 2003; 39: 17
(贺志荣, 周敬恩, 宫崎修一. 金属学报, 2003; 39: 617)
[4] Hosoda H, Wakashima K, Miyazaki S, Inoue K. Mater Res Soc Symp Proc, 2005; 842: 353
[5] Choi M S, Ogawa J, Fukuda T, Kakeshita T. Mater Sci Eng, 2006; A438–440: 527
[6] Kishi Y, Yajima Z, Shimizu K, Morii K. J Phys IV, 2001; 11(8): 101
[7] Si N C, Zhang Z M. Rare Met Mater Eng, 2008; 37: 185
(司乃潮, 张志敏. 稀有金属材料与工程, 2008; 37: 185)
[8] Sia N N, Jeom Y C. Acta Mater, 2005; 53: 449
[9] Chen S L, Hsieh S F, Lin H C, Lin M H, Huang J S. Mater Sci Eng, 2007; A445–446: 486
[10] Jeom Y C, Sia N N. Mater Sci Eng, 2006; A432: 100
[11] Uchil J, Kumara K G, Mahesh K K. J Alloys Compd, 2001; 325: 210
[12] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293
(贺志荣, 王芳, 王永善, 夏鹏举, 杨 波. 金属学报, 2007; 43: 1293)

[13] He Z R. Acta Metall Sin, 2007; 43: 163
(贺志荣. 金属学报, 2007; 43: 163)
[14] Vaidynathan R, Bourke M A M, Dunand D C. Metall Mater Trans, 2001; 32A: 777
[15] Miyazaki S, Otsuka K. Metall Trans, 1986; 17A: 53

[16] Kim J I, Miyazaki S. Acta Mater, 2005; 53: 4545

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[9] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[10] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[11] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[12] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[13] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[15] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
No Suggested Reading articles found!