Please wait a minute...
Acta Metall Sin  1989, Vol. 25 Issue (6): 60-64    DOI:
Current Issue | Archive | Adv Search |
TEMPERATURE EFFECT AND OVERLOAD RETARDATION EFFECT ON CORROSION FATIGUE CRACK GROWTH OF HIGH STRENGTH STEEL
QIAN Yourong;HE Xiangdong Beijing University of Aeronautics and Astronautics QIAN Yourong; Department of Materials Science and Engineering; Boiling University of Aeronautics and Astronautics; BeilinK 100083
Cite this article: 

QIAN Yourong;HE Xiangdong Beijing University of Aeronautics and Astronautics QIAN Yourong; Department of Materials Science and Engineering; Boiling University of Aeronautics and Astronautics; BeilinK 100083. TEMPERATURE EFFECT AND OVERLOAD RETARDATION EFFECT ON CORROSION FATIGUE CRACK GROWTH OF HIGH STRENGTH STEEL. Acta Metall Sin, 1989, 25(6): 60-64.

Download:  PDF(437KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By the test of fatigue crack growth in distilled water at temperaturesvaried from 18 to 55℃, the confirmation of the intensive temperature effect on thecorrosion fatigue for super strength steel 30CrMnSiNi2A and the compound expres-sion concerning the effects of ΔK and temperature on crack growth rate (CGR)have been made. Because the apparent activation energy (36.7 kJ/mol) resulted byregressive analysis of CGR data is nearly equal to the activation energy of hydro-gen diffusion in γ-Fe, it is strong enough to support the theory of hydrogen assis-ted crack growth. The overload retardation effect, which is significant to the fa-tigue crack propagation in atmosphere, greatly decreases in corrosion fatigue crackgrowth, especially at lower frequency, e. g., 0.1Hz. This phenomenon may be ex-plained as the increase of the SCC component of CGR after an overload.
Key words:  corrosion fatigue      crack growth rate      temperature effect      overload retardation effect     
Received:  18 June 1989     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1989/V25/I6/60

1 Wci R P, Shim G. ASTM STP 801, 1983: 5
2 Fujii C T, Smith A. ASTM STP 801, 1983: 390
3 James L A, Knecht R L. Metall Trans, 1975; 6A: 109
4 Mills W J, Hertzberg R W. Eng Fract Mech, 1976; 8: 657
5 Volkl J, Alefeld G. In: Alefeld G, Voelkl J eds., Hydrogen in Metals I: Basic Properties, Topics in Applied Physics, vol. 28, Berlin: Springer-Verlag, 1978: 321
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[3] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[4] Dongyu HE,Yuxin LIU. PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film[J]. 金属学报, 2019, 55(3): 325-331.
[5] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[6] WU Xinqiang, TAN Jibo, XU Song, HAN En-Hou, KE Wei. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. 金属学报, 2015, 51(3): 298-306.
[7] HUANG Hefei, LI Jianjian, LIU Renduo, CHEN Huaican, YAN Long. TEMPERATURE EFFECT OF Xe ION IRRADIATION TO 316 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1189-1194.
[8] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[9] HAN En--Hou. RESEARCH TRENDS ON MICRO AND NANO--SCALE MATERIALS DEGRADATION IN NUCLEAR POWER PLANT[J]. 金属学报, 2011, 47(7): 769-776.
[10] WU Xinqiang XU Song HAN En-Hou KE Wei. CORROSION FATIGUE OF NUCLEAR--GRADE STAINLESS STEEL IN
HIGH TEMPERATURE WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL
[J]. 金属学报, 2011, 47(7): 790-796.
[11] MA Yingjie LI Jinwei LEI Jiafeng TANG Zhenyun LIU Yuyin YANG Rui. INFLUENCES OF MICROSTRUCTURE ON FATIGUE CRACK PROPAGATING PATH AND CRACK GROWTH RATES IN TC4ELI ALLOY[J]. 金属学报, 2010, 46(9): 1086-1092.
[12] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[13] ZHU Mingliang XUAN Fuzhen ZHU Kuilong WANG Guozhen JIA Tianyao. EFFECT OF HEAT TREATMENT ON FATIGUE BEHAVIOR OF 25Cr2NiMo1V STEEL[J]. 金属学报, 2009, 45(3): 320-325.
[14] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[15] FANG Bingyan; HAN Enhou; WANG Jianqiu; KE Wei. Influence of strain rate on near-neutral pH environmentally assisted cracking of pipeline steels[J]. 金属学报, 2005, 41(11): 1174-1182 .
No Suggested Reading articles found!