Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 790-796    DOI: 10.3724/SP.J.1037.2011.00162
论文 Current Issue | Archive | Adv Search |
CORROSION FATIGUE OF NUCLEAR--GRADE STAINLESS STEEL IN
HIGH TEMPERATURE WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL
WU Xinqiang1, 2),  XU Song1, 2), HAN En-Hou1, 2), KE Wei1, 2)
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Material, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WU Xinqiang XU Song HAN En-Hou KE Wei. CORROSION FATIGUE OF NUCLEAR--GRADE STAINLESS STEEL IN
HIGH TEMPERATURE WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL. Acta Metall Sin, 2011, 47(7): 790-796.

Download:  PDF(1482KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The high safety of light water reactor nuclear power plants (NPPs) requires very strict design standard and service property of pressure boundary components materials. The service degradation and life assessment of the components materials primarily depend on the understanding of environmentally assisted failure mechanism, accumulation of service property data and construction of evaluation models. Currently domestic NPPs are relying on foreign design, operation and life assessment standards. However, recent experimental data indicate that even the ASME design fatigue code may be deficient in safety margin under certain conditions of loading and environment. In the present work, based on the corrosion fatigue tests in simulated NPPs' high temperature pressurized water, the corrosion fatigue behavior and environmentally assisted failure mechanism of domestic nuclear-grade stainless steel have been investigated. The factors affecting fatigue life of nuclear grade stainless steel in high temperature water were evaluated. A design fatigue model was constructed by taking environmental degradation effects into account and the corresponding design curves were given for the convenience of engineering applications.
Key words:  nuclear-grade stainless steel      high temperature pressurized water      corrosion fatigue      environmentally assisted cracking      design model     
Received:  23 March 2011     
Fund: 

Supported by National Basic Research Program of China (No.2011CB610506) and National Science and Technology Major Project (No.2011ZX06004-009)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00162     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/790

[1] Cahn R W, Haasen P, Kramer E J. Mater Sci Technol, 1994: 10B: 38

[2] Wu X Q, Han E H, Ke W, Katada Y. Nucl Eng Des, 2007; 237: 1452

[3] Wu X Q, Kataday Y. Corros Sci, 2005; 47: 1415

[4] Raman S G S, Kitsunai Y. Eng Fail Anal, 2004; 11: 293

[5] Chopra O K, Shack W J. ASME PVP, 2003; 453: 71

[6] Chopra O K, Shack W J. Nucl Eng Des, 1998; 184: 49

[7] Higuchi M, Iida K, Asada Y. In: Van Der Sluys WA, Piascik R S, Zauierucha R, eds., Effects of Strain Rate Change on Fatigue Life of Carbon Steel in High–Temperature Water, ASTM STP 1298, Philadelphia: American Society for Testing and Materials, 1997: 216

[8] H¨anninen H, Cullen W, Kemppainen M. Corrosion, 1990; 46: 563

[9] Kuniya J, Anzai H, Masaoka I. Corrosion, 1992; 48: 419

[10] Atkinson J D, Yu J. Fatigue Fract Eng Mater Struct, 1997; 20: 1

[11] Chopra O K, Shack W J. J Pressure Vessel Technol Trans ASME, 1999; 121: 49

[12] Ford F P. Corrosion, 1996; 52: 375

[13] Maiya P S. J Pressure Vessel Technol Trans ASME, 1987; 109: 116

[14] Xu S, Wu X Q, Han E H, Ke W, Katada Y. Mater Sci Eng, 2008; A49: 16

[15] Laird C, Smith G C. Philo Mag, 1962; 8: 847

[16] Laird C, Finney J M, Wilsdorf D K. Mater Sci Eng, 1981; 50: 127

[17] Langer B F. ASME J Basic Eng, 1962; 84: 389
[1] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[2] WU Xinqiang, TAN Jibo, XU Song, HAN En-Hou, KE Wei. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. 金属学报, 2015, 51(3): 298-306.
[3] KUANG Wenjun WU Xinqiang HAN En-Hou. EFFECT OF Ni2+ IN OCCLUDED VOLUME ON THE OXIDATION BEHAVIOR OF 304 STAINLESS STEEL IN HIGH TEMPERATURE WATER[J]. 金属学报, 2011, 47(7): 927-931.
[4] ZHONG Xiangyu WU Xinqiang HAN En-Hou. CORROSION BEHAVIORS OF NUCLEAR-GRADE STAINLESS STEEL AND FERRITIC-MARTENSITIC STEEL IN SUPERCRITICAL WATER[J]. 金属学报, 2011, 47(7): 932-938.
[5] HAN En--Hou. RESEARCH TRENDS ON MICRO AND NANO--SCALE MATERIALS DEGRADATION IN NUCLEAR POWER PLANT[J]. 金属学报, 2011, 47(7): 769-776.
[6] FANG Bingyan; HAN Enhou; WANG Jianqiu; KE Wei. Influence of strain rate on near-neutral pH environmentally assisted cracking of pipeline steels[J]. 金属学报, 2005, 41(11): 1174-1182 .
[7] YANG Jihong; JIA Weiping; LI Shouxin. Observation Of The Dislocation Structure In [013] Copper Single Crystal During Corrosion Fatigue In Nacl Aqueous Solution[J]. 金属学报, 2004, 40(1): 99-102 .
[8] WEI Xuejun;LI Jin;LIU Su'e;KE Wei (State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015). ANALXSIS OF FATIGUE FRACTURE WITH CYCLIC OVERLOADING FOR A537 STEEL IN 3.5%NaCl SOLUTION AT AN APPLIED CATHODIC POTENTIAL[J]. 金属学报, 1998, 34(2): 146-150.
[9] XIE Jianhui;WU Yinshun; ZHU Rizhang (Universily of Science and Technology Beijing;Beijing 100083). INTERGRANULAR CORROSION BEHAVIOUR OF IMPLANT STAINLESS STEEL DURING CORROSION FATIGUE[J]. 金属学报, 1997, 33(3): 304-308.
[10] WANG Jianqiu; LI Jing; WANG Zhengfu; ZHU Ziyong; KE Wei (Corrosion science laboratory; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015); ZANG Qishan; WANG Zhongguang (Key laboratory of fatigue and fracture; Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015). CRACK INITIATION OF SUPERPURE STAINLESS STEEL DURING LOW CYCLE CORROSION FATIGUE IN 3.5% NaCl SOLUTION[J]. 金属学报, 1995, 31(15): 103-108.
[11] XING Zhiqiang; CHENG Yongmei(Beijing Polytechnic University;100022);CHU Wuyang(University of Science and Technology Beijing; 100083)(Manuscript received 94-03-10;in revised form 94-07-19). LOW-FREQUENCY FATIGUE OF TWO Ti_3Al INTERMETALLICS IN DISTILLED WATER[J]. 金属学报, 1995, 31(1): 34-39.
[12] WANG Zhengfu;KE Wei Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; ShenyangLINJin;Institute of Corrosion and Protection of Metals;Academia Sinica;Shenyang 110015. INFLUENCES OF APPLIED POTENTIALS AND LOADING WAVEFORM ON FATIGUE CRACK GROWTH FOR STEEL A537[J]. 金属学报, 1993, 29(6): 82-87.
[13] ZHOU Xiangyang;LI Jin;LIU Guanglei;KE Wei Corrosion Science Laboratory; Academia Sinica; Institute of Corrosion and Protection of Metals; Academic Sinica; ShenyangWEI Xuejun;Institute of Corrosion and Protection of Metals Academia Sinica Shenyang110015. AN APPLICATION OF SPI TECHNIQUE FOR STUDING STRAIN DISTRIBUTION AT CF CRACK TIP[J]. 金属学报, 1993, 29(6): 77-81.
[14] HAN Yumei;ZHENG Yuli;KE Wei Corrosion Science Laboratory;Institute of Corrosion and Protection of Metals; Academia Sinica; ShenyangHAN Enhou;Institute of Corrosion and Prolection of Metals;Academia Sinica;Shenyang110015. EFFECTS OF STRESS RATIO AND FREQUENCY ON CORROSION FATIGUE CRACK GROWTH IN LOW ALLOY STEEL[J]. 金属学报, 1993, 29(5): 31-36.
[15] LIU Xiaokun;WANG Jianjun;LU Minxu;JIN Shi;FU Xiangjiong Xi'an Petroleum Institute Northwestern Polytechnical University; Xi'an. CORROSION FATIGUE CRACK PROPAGATION OF MARTENSITIC AND BAINITIC GC-4 ULTRA-HIGH STRENGTH STEEL[J]. 金属学报, 1993, 29(12): 27-33.
No Suggested Reading articles found!