Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (3): 5-9    DOI:
Current Issue | Archive | Adv Search |
SLIP FEATURE AND GRAIN BOUNDARY BEHAVIOURS OF Ni_3 Al ALLOYS DURING DEFORMATION
LIN Dongliang;CHEN Da T. L. Lin Shanghai Jiaotong University ;professor;Deportment of Materials Science;Shanghai Jiactong University; Shanghai 200030
Cite this article: 

LIN Dongliang;CHEN Da T. L. Lin Shanghai Jiaotong University ;professor;Deportment of Materials Science;Shanghai Jiactong University; Shanghai 200030. SLIP FEATURE AND GRAIN BOUNDARY BEHAVIOURS OF Ni_3 Al ALLOYS DURING DEFORMATION. Acta Metall Sin, 1990, 26(3): 5-9.

Download:  PDF(1718KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The deformation behaviours of Ni_3Al alloys with various chemicalcompositions and subjected to different heat treatments were in situ observed underSEM. Moreover, in situ observations of slip trace were supplemented by the directobservation of dislocation arrangements under TEM. In B-doped Ni_3Al alloys it isshown that close to the grain boundary there exists a thin slip transition region,within which slip lines are reoriented or other slip systems are operated to producea local strain accommodation and to relax the stress concentration at grain bound-aries. Boron seems to lower the stress for dislocation generation from the grainboundary or to ease the cross-slip close to the boundary,and also to increase the numberof dislocation sources. However, B-enhenced ductility is seriously affected by alloystoichiometry, the addition of a tertiary alloy element and heat treatment, etc.
Key words:  Ni_3Al      intermetallic compound      deformation      slip      dislocation     
Received:  18 March 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I3/5

1 Koch C C, Liu C T, Stoloff N S. Proc. of Symp. on High Temperature Ordered Intermetallic Alloys, MRS, 1985 and 1987
2 Stoloff N S. Int Met Rev, 1984; 29: 123
3 Liu C T, White C L, Horton J A. Acta Metall, 1985; 33: 213
4 Liu C T. White C L. Proc Materials Research Society Symposium on High Temperature Ordered Intermetallic Alloy, Boston, MA, Nov. 26--30, 1984, Vo1. 39: 365--380
5 Shulson E M, Weihs T P, Baker I, Frost H J, Horton J A. Acta Metall, 1986; 34: 1395
6 Bond G M, Robertson I M, Birnbaum H K. J Mater Res, 1987; 2: 436
7 Brandon B G, Wald M. Philos Mag, 1961; 6: 1035
8 Chen D, Lin T L. to published
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[14] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[15] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
No Suggested Reading articles found!