Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (4): 34-37    DOI:
Current Issue | Archive | Adv Search |
DEFORMATION AND ITS EFFECT ON STRENGTHENING OF COLD-DRAWN PLAIN STEEL WIRES
SHI Deke;LIU Junhai;HAO Hongqi Xi'an Jiaotong University
Cite this article: 

SHI Deke;LIU Junhai;HAO Hongqi Xi'an Jiaotong University. DEFORMATION AND ITS EFFECT ON STRENGTHENING OF COLD-DRAWN PLAIN STEEL WIRES. Acta Metall Sin, 1991, 27(4): 34-37.

Download:  PDF(1463KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  During cold-drawing of plain steel wires, the fine lamellar cementitealtered into a ductile phase with feasible deformability. A lot of ledges, which mayemit the dislocations, are found along the Fe_3C/Fe interface. This seems to be oneof the causes for formation of greater dislocation density along the Fe_3C/Fe inter-face during deformation. There was enough evidence to prove that the dislocationcut through Fe_3C. Therefore, it is necessary to consider its effect on strengthening.
Key words:  deformation      strengthening      cold-drawn steel wire      dislocation cell      ledge      cementite     
Received:  18 April 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I4/34

1 Embury J D, Fisher R M. Acta Metall, 1966; 14: 147
2 Langford G, Cohen M. ASM Trans Q, 1969; 62: 623
3 Kelly A. Strengthening Methods in Crystals, Amsterdam: Elsevier, 1971: 331
4 Thompson A W. Metall Trans, 1977; 8A: 833
5 Nicholson R B. In: May M J ed, Effect of Second Phase Particle on the Mechanical Properties of Steel, ISI, London, 1971: 1, 61
6 黄孝瑛,郭薇,潘天喜,赵坚.金属学报,1987;23:A200
7 Li J C M, Chou Y T. Metall Trans, 1970; 1: 1145
8 Mintz B. Met Technol, 1984; 11: 265
9 Dollar M, Bernstein I M, Daeubler M, Thompson A W. Metall Trans, 1989; 20A: 447
10 Lindley T C, Oates G, Rochards C E. Acta Metall, 1970: 18: 1127
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[10] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[11] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[14] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[15] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
No Suggested Reading articles found!