Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (10): 40-45    DOI:
Current Issue | Archive | Adv Search |
DEFORMATION AND FRACTURE BEHAVIOUR OF Al-Li ALLOY UNDER SLOW TENSILE RATE CONDITION
ZHANG Yun;WANG Zhongguang;LIU Yulin;ZHAO Hongen;HU Zhuangqi;YUAN Zhengxing Institute of Metal Research; Academia Sinica; Shenyang Shenyang University of Technology
Cite this article: 

ZHANG Yun;WANG Zhongguang;LIU Yulin;ZHAO Hongen;HU Zhuangqi;YUAN Zhengxing Institute of Metal Research; Academia Sinica; Shenyang Shenyang University of Technology. DEFORMATION AND FRACTURE BEHAVIOUR OF Al-Li ALLOY UNDER SLOW TENSILE RATE CONDITION. Acta Metall Sin, 1993, 29(10): 40-45.

Download:  PDF(2070KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The deformation and fracture behavior of an Al-Li alloy have been investi-gated under slow tensile loading. The relatioship between stress intensity factor and crackgrowth rate has been determined for various aging conditions of the alloy. Plasticdeformation mechanism, microfracture mode and crack growth resistance are different forvarious aging temperatures due to various microstructures. It was indicated that the strainlocalization was the reason for low plastisity and the strain localization closely related to thestate of grain boundaries. The relation between macroproperties and microdeformation char-acteristics has also been determined.
Key words:  Al-Li alloy      deformation      fracture     
Received:  18 October 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I10/40

1 Starke E A. Lin F S. Metall Trans, 1982; 13A: 2259
2 Vasudevan A K. Ludwiezak E A, Boumann S F, Howell P R, Doherty R D, Kersker M M. Mater Sci Tech, 1986; 2: 1205
3 Noble B, Harris S J, Pinsdale K. Met Sci 1982; 16:425
4 Lewandowsiki J J. Mater Sci Eng, 1990; A123: 219
5 Miller W S, Thomas M P, Lioyd D J, Creber D. Mater Sci Tech. 1986; 2: 1210
6 Sriratsan T S, Alan Place T. J Mater Sci, 1989; 24: 1543
7 王中光,张匀,胡壮麒.金属学报,1992;28:A230
8 Jata K V, Starke E A Jr. Metall Trans 1986; 17A: 1011
9 Nicholls D J, Martin T W. Fatigue Fract Eng Mater Struct 1990; 13: 83
10 Furukawa M, Miura Y, Nemoto M. Trans Jpn Inst Met, 1985; 26: 230
11 Zhang Yun, Xu Youbo, Liu Yulin, Hu Zhangqi. Scr Met Mater, to be accepted, 1993
12 Seeger A. Kristau Plasti Ziiat, Aus Handbuch der Physic Band Ⅶ / 2, Berlin: Springer--Verlag, 1958
13 张匀,刘玉林,赵洪恩,胡壮麒,材料科学进展,待发表
14 Owen N J, Field D J, Butler E P. Mate Sci Technol, 1986; 2: 121
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[14] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[15] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
No Suggested Reading articles found!