Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (22): 471-475    DOI:
Current Issue | Archive | Adv Search |
SUBSTRUCTIONAL FEATURE OF SURFACE LASER MELTED ZAlSi 12 ALLOY
LIANG Gongying; LI Chenglao; ZHOU Jiajin(Xi'an Jiaotong University)
Cite this article: 

LIANG Gongying; LI Chenglao; ZHOU Jiajin(Xi'an Jiaotong University). SUBSTRUCTIONAL FEATURE OF SURFACE LASER MELTED ZAlSi 12 ALLOY. Acta Metall Sin, 1994, 30(22): 471-475.

Download:  PDF(368KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mopohological alteration of Si in eutectic of the surface laser-melted ZAlSi 12 alloy was observed from lath-like into corallite under SEM and TEM. The laser-melted treatment on the ZAlSi 12 alloy surface makes its substruction not only an essential change over dislocation density and mopohology of the laser-melted region, but also an increase of dislocation density in the Al matrix around the heat effecting zone and morphological alteration of dislocation from linear shape into network.Meamwhile, numerous crystallites recrystallize out in the heat effecting zone.In the laser-melted region,α-Al is supersaturated and solutionized with Si atoms. The Si atoms segregated to form the enriched area, and a great many very fine Si crystals precipitated out along <110> direction. X-ray diffraction analysis showed that the lattiee parameters of Al may be decreased by the laser-melted treatment.
Key words:  aluminium alloy      laser scanning      dislocation     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I22/471

1FerraroF,NannettiCA,CampelloM,SeninA,In:QuenzerAed.,Proc.3rdInt.ConfonLasersinManufacturing,3-5June,1986,Paris,BedfordUK:IFS(Publications)Ltd,1986:2332LiangGongying,ZhouJiayin,ZhengQiguang.ChineseJournalofLasers,1993;B2:2413KobayashiKF,HoganLM.MaterSci,1985;20:19614ShuzuLU,HellawellA.CrystalGrowth,1985;73:3165魏全金.材料电子显微分析.北京:冶金工业出版社,1990:186
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[11] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[13] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
No Suggested Reading articles found!