Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (7): 289-295    DOI:
Current Issue | Archive | Adv Search |
A TEM STUDY OF SPINODAL DECOMPOSITION IN Fe-1 .83C MARTENSITE
REN Xiaobing; WANG Xiaotian (Xi'an Jiaotong University) SHIMIZU Ken'ichi(Kanazawa institute of Technology; Japan) TADAKI Tsugio (Osaka University;Japan)(Manuscript received 27 October; 1993; in revised form 4 January; 1994)
Cite this article: 

REN Xiaobing; WANG Xiaotian (Xi'an Jiaotong University) SHIMIZU Ken'ichi(Kanazawa institute of Technology; Japan) TADAKI Tsugio (Osaka University;Japan)(Manuscript received 27 October; 1993; in revised form 4 January; 1994). A TEM STUDY OF SPINODAL DECOMPOSITION IN Fe-1 .83C MARTENSITE. Acta Metall Sin, 1994, 30(7): 289-295.

Download:  PDF(562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Diffuse scattering and microstructure of Fe-1.83C(%) martensite aged at room temperature was studied by TEM. The intensity distribution of diffuse scattering in reciprocal space was determined by double-tilt technique. The results show that the shape of martensite diffraction spot becomes a diffuse spike after aging, and its 3-dimensional profile appears to be two head-on 4-sided regular pyramids. Fourier analysis of the diffuse scattering suggests that martensite undergoes a spinodal decomposition during aging,the tweed-like modulated structure is composed of a dominant wave with wavelength of about 1 nm and non-dominant waves with longer wavelengths. For the first time it is found that the modulated structure of Fe-C martensite does not grow even after aged for several months.The reason is considered to be due to the strong elastic interactions among carbon-enriched and depleted regions.Correspondent: REN Hiaobing, Presently with Department of Physics, Nanjing, University, Nanjing 21008)
Key words:  Fe-C martensite      aging      spinodal decomposition      diffuse scattering     
Received:  18 July 1994     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I7/289

1OlsonGB,CohenM.MetallTrans,1983;14A:10572NagakuraS,HirotsuY,KusunokiM,NakamuraY.MetallTrans,1983;14A:10253KusunokiM,NagakuraS.JApplCrystallogr,198l:14:3294TaylorKA,ChangL,OlsonGB,SmithGDW,CohenM,VanderSandeJB.MetallTrans,1989;20A:27175UwakwehONC,GeninJMRR,SilvainJG.MetallTrans,1991;22A:7976KhachaturyanAG.TheoryofStructuralTransformationsinSolide.JohnWiley&Sons,19837CahnJW.ActaMetall,1961;9:5258CahnJW.ActaMetall.1961;9:7959RenSB,WangST.MetallTrans,1988;19A:242710任晓兵,王笑天.金属热处理学报,1990;11:2811KhachaturyanAG,OnishimovaTA.PhysMetMetallogr,1968;26:1212LangerJS,Bar-onM,MillerHD.PhysRev,1975:A11:141713MiyazakiT,DoiM.MaterSciEng,1989;A110:17514KawasakiK,EnomotoY.Physica,1988;A150:46
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[4] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[5] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[9] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[10] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[11] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[12] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[13] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[14] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[15] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
No Suggested Reading articles found!