Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (10): 445-454    DOI:
Current Issue | Archive | Adv Search |
HYDROGEN EMBRITTLEMENT OF SPHEROIDIZED HIGH CARBON STEEL SHEET UNDER MULTIAXIAL STRESS STATE
FAN Yunchang; JIA NG Zhiqing (Shijiazhuang Railway institute;Shijiazhuang 050043)(Manuscript received 1995-03-30; in revised form 1995-05-29)
Cite this article: 

FAN Yunchang; JIA NG Zhiqing (Shijiazhuang Railway institute;Shijiazhuang 050043)(Manuscript received 1995-03-30; in revised form 1995-05-29). HYDROGEN EMBRITTLEMENT OF SPHEROIDIZED HIGH CARBON STEEL SHEET UNDER MULTIAXIAL STRESS STATE. Acta Metall Sin, 1995, 31(10): 445-454.

Download:  PDF(950KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hydrogen embrittlement of a spheroidized high carbon steel sheet has been investigated over a range of stress states from uniaxial to equibiaxial tension. For a given stress state, data based on locally determined fracture strains show a decrease in ductility for cathodically charged specimens compared with the corresponding uncharged condition. The loss of ductility caused by hydrogen increases with an increasing degree of biaxiality of the stress state. Metallographic and fractographic examinations show that the fracture of both charged and uncharged sheets is a consequence of void nucleation (due to the decohesion between carbide particles and ferrite matrix),void growth,and void link─up. These fracture processes are accelerated by hydrogen,especially in equibiaxial tension. The above results are discussed in terms of previously proposed modles and postulated mechanisms in steels.Correspondent: FAN Yunchang, senior engineer, Institute of Materials Science and Engineering, Shijiazhuang Railway institute, Shijiazhuang 050043
Key words:  hydrogen embrittlement      void nucleation      void growth      void link─up      multiaxial stress state     
Received:  18 October 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I10/445

1ArogonAS,ImJ,SafogluR.MetallTrans,1975;6A:8252DrianiRA,JosephicPH.ScrMetall,1979;13:4693GarberR,BernsteinIM,ThompsonAW.MetallTrans,1981;12A:2254CialoneH,AsaroRJ.MetallTrans,1981;12A:13735GoldenbergT,LeeTD,HirthJP.MetallTrans,1978;9A:16636LeeTD,GoldenbergT,HirthJP.MetallTrans,1979:10A:1997WilshawTR.JIronSteelInst,1966;204:9368GriffisCA,SpretnekJW.TransIronSteelInstJpn,1969;9:3729FisherJR,GurlandJ.MetSci,1981:19310TienJK,NairSV,JensenRR.In:BernsteinIM,ThompsonAWeds.,ProcIntConfonHydrogenEffectinMetals,Warrendale,PA:MetallSocAIME,1981:3711BourcierRJ.MSThesis,MichiganTechnologicalUniversity,MI,198112McMahonCJJr.In:BernsteinIM,ThompsonAWeds.,ProIntConfonHydrogenEffectsinMetals,Warrendale,PA:MetallSocAIME,1981:21913ThompsonAW.MaterSciEng,1974;14:25314ChangYW,AsaroRJ.MetSci,1978;12:27715FanYCKossD.ProcoftheThirdIntConfonEnvironmentalDegradationofEngineeringMaterials,UniversityPark,PA,1987:12116DeKazinczyF.ActaMetall,1959;706:35717TienJK,ThompsonAW,BernsteinIM,RichardsRJ.MelallTrans,1976;7A:82118KimuraH,MatsueH.In:BernstienIM,ThompsonAWeds.,ProcIntConfonHydrogenEffectinMetals,Warrendale,PA:MetallScoAIME,1981:19119KimuraH,MatsueH,KimuraT.ProcJIMS-2“HydrogeninMetals”,SuppltoTransJapanInstMetals,Minakami,Japan,1980:533
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[3] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[4] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[5] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[6] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[7] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[8] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[9] Yongwei SUN,Jizhi CHEN,Jun LIU. STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL[J]. 金属学报, 2015, 51(11): 1315-1324.
[10] YAN Erhu, LI Xinzhong, TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY[J]. 金属学报, 2014, 50(1): 71-78.
[11] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[12] WANG Yanfei GONG Jianming JIANG Wenchun JIANG Yong TANG Jianqun . NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING[J]. 金属学报, 2011, 47(5): 594-600.
[13] LI Yiyi FAN Cungan RONG Lijian YAN Desheng LI Xiuyan. HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS[J]. 金属学报, 2010, 46(11): 1335-1346.
[14] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
[15] ;. Microstructures and Hydrogen Permeation Characteristics of Nb-Ti-Ni Alloys[J]. 金属学报, 2008, 44(7): 781-785 .
No Suggested Reading articles found!