Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (15): 109-115    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF GRAIN SIZE ON OXIDATION BEHAVIOUR OF Ni_3Al-Zr BASE ALLOY AT ELEVATED TEMPERATURE
YE Changjiang; LI Tiefan; ZHOU Longjiang (Corrosion Science Lab.;Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

YE Changjiang; LI Tiefan; ZHOU Longjiang (Corrosion Science Lab.;Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015). EFFECT OF GRAIN SIZE ON OXIDATION BEHAVIOUR OF Ni_3Al-Zr BASE ALLOY AT ELEVATED TEMPERATURE. Acta Metall Sin, 1995, 31(15): 109-115.

Download:  PDF(585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The oxidation behaviour of Ni-11.82Al-1.03Zr-0.1B(wt-%) alloy with grain sizes of 30 μm and 180 μm was investigated at 900, 1100℃ in air. The short-circuit path for rapid diffusion along grain boundary is responsible for the change in the oxidation rate. At 900℃.with decreasing grain size.the oxidation rate of Ni-11.82Al-1.03Zr-0.1B alloy lowered; at 1100℃, grain size did not affect it. The structure and composition of the oxide scale were examined by EPMA and XRD analyses. which confirmed that the oxide layers formed on the two specimens are the same, containing NiO(outer), Al_2O_3, NiAl_2O_4(inner). The reactive element effect of Zr caused that the scale-alloy interface distinctly showed a different shape. a wavy interface(900℃) and a tree-like interface(1100℃).
Key words:  Ni_3Al      oxidation behaviour      grain size      reactive element effect     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I15/109

1MerzHD,MetallTrans,1979:10A:712BasuSN,YauerkGJ.OxidMet,1991:35:4413GrigginsCS,PettitFS.TransMetallAIME,1969:245:25094GoedjenJG.ShoresDA.OxidMet,1992:37:1255TakeyamaM,LiuCT.ActaMetall,1989:37:26816TakeyamaM,LiuCT.ScriptaMetall,1989:23:7277WangF,LouH.MaterSciTechnol,1990:6:618LouH.WangF.XiaB.ZhangL,OxidMet,1992:38:2999SinghRamanRK,KhenmaAS.TiwariRK.GnanamoorthyJB.OxidMet,1992;37:110SinghRamanRK,GnamamoorthySB,RoySK.OxidMet,1993:40:2111AheF.ArakiH.YoshidaH.OkadM.WatanadeM.CorrosSci,1981:21:81912刘国勋.金属学原理.北京:冶金工业出版社,1987:7313BriksN,MeirerGH.IntroductiontohighTemperatureOxidationofMetals.NewYork:EdwardArnold,1983:9314BarretCA.KhanAS.LowellCE.JElectrochemSoc,1981;128:2515ReddyKPR,SmialekJL,CooperAR.OxidMet,1982;17:42916SeitzF.AdvancePhys,1952;1:1317DoychkJ.RuhleM.OxidMet,1989;31:431
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. 金属学报, 2021, 57(2): 182-190.
[4] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[5] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[6] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[8] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[9] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[10] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[12] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[13] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[14] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[15] LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. 金属学报, 2015, 51(1): 121-128.
No Suggested Reading articles found!