|
|
Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure |
ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong( ) |
Jiangxi Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
|
Cite this article:
ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure. Acta Metall Sin, 2025, 61(3): 488-498.
|
Abstract The magnesium alloy exhibits a notable plasticity limitation due to its hcp structure. In recent years, the development of a bimodal structure, consisting of deformed coarse grains and recrystallized fine grains, has emerged as an effective strategy to balance the strength and plasticity of magnesium alloys, offering a new avenue for property. This optimization study investigates the formation mechanism and deformation behavior of the bimodal structure in AZ31 magnesium alloy by controlling the extrusion process. The formation of the bimodal structure is attributed to the incomplete dynamic recrystallization during plastic deformation and the particle-stimulated nucleation effect of the secondary phase. During deformation, fine grains endure higher stresses, while coarse grains accommodate more strain. The fine grains significantly contribute to the improved strength of the AZ31 magnesium alloy, while the coordinated deformation of the coarse grains ensures excellent plasticity. Leveraging the superior deformation capability of the bimodal structure, fine-grained AZ31 magnesium alloy was successfully fabricated through further extrusion, achieving outstanding mechanical properties: a tensile strength of 265 MPa, a yield strength of 112 MPa, and an elongation of 19%. This demonstrates the synergistic enhancement of strength and plasticity.
|
Received: 15 November 2024
|
|
Fund: National Key Research and Development Program of China(2022YFC2905204);National Natural Science Foundation of China(52061028);Major Research and Development Projects of Jiangxi Province(20223-BBE51021);Maturation and Engineering of Major Scientific and Technological Achievements in Jiangxi Province(20243BDD40002);Program of One Thousand Talented People of Jiangxi(S2021GDKX-0864) |
Corresponding Authors:
LIU Yong, professor, Tel: 13576087535, E-mail: liuyong@ncu.edu.cn
|
1 |
Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metall. Sin., 2008, 21: 313
|
2 |
Pan F S, Jiang B. Development and application of plastic processing technology of magnesium alloy [J]. Acta Metall. Sin., 2021, 57: 1362
|
|
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
3 |
Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
|
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
4 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
|
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
5 |
Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
|
|
刘 勇, 曾 刚, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
|
6 |
Xu J, Wang X W, Shirooyeh M, et al. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion [J]. J. Mater. Sci., 2015, 50: 7424
|
7 |
Muralidhar A, Narendranath S, Shivananda Nayaka H. Effect of equal channel angular pressing on AZ31 wrought magnesium alloys [J]. J. Magnes. Alloy., 2013, 1: 336
|
8 |
Rao X X, Wu Y P, Pei X B, et al. Influence of rolling temperature on microstructural evolution and mechanical behavior of AZ31 alloy with accumulative roll bonding [J]. Mater. Sci. Eng., 2019, A754: 112
|
9 |
Han T Z, Huang G S, Deng Q Y, et al. Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding [J]. J. Alloy. Compd., 2018, 745: 599
|
10 |
Prasad S V S, Prasad S B, Verma K, et al. The role and significance of magnesium in modern day research—A review [J]. J. Magnes. Alloy., 2022, 10: 1
|
11 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
|
12 |
Rong W, Zhang Y, Wu Y J, et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys [J]. Mater. Sci. Eng., 2019, A740-741: 262
|
13 |
Hu K, Li C Y, Xu G J, et al. Effect of extrusion temperature on the microstructure and mechanical properties of low Zn containing wrought Mg alloy micro-alloying with Mn and La-rich misch metal [J]. Mater. Sci. Eng., 2019, A742: 692
|
14 |
Chen J J, Tang C P, Xie H M, et al. Research progress of bimodal-grained structure in copper aluminum and magnesium alloys [J]. Trans. Mater. Heat Treat., 2022, 43: 1
|
|
陈佳俊, 唐昌平, 谢红梅 等. 双峰分布晶粒在铜、铝、镁合金中的研究进展 [J]. 材料热处理学报, 2022, 43: 1
doi: 10.13289/j.issn.1009-6264.2021-0465
|
15 |
Zha M, Zhang X H, Zhang H, et al. Achieving bimodal microstructure and enhanced tensile properties of Mg-9Al-1Zn alloy by tailoring deformation temperature during hard plate rolling (HPR) [J]. J. Alloys Compd., 2018, 765: 1228
|
16 |
Shokri M, Zarei-Hanzaki A, Abedi H R, et al. On the microstructure and RE-texture evolution during hot tensile deformation of Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Res. Technol., 2021, 15: 6974
|
17 |
Tong L B, Zheng M Y, Cheng L R, et al. Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg-Zn-Ca alloy [J]. Mater. Sci. Eng., 2013, A569: 48
|
18 |
Bai S W, Fang G, Zhou J. Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation [J]. J. Mater. Process. Technol., 2020, 275: 116361
|
19 |
Shang Q, Wu F, Chen H B, et al. Enhancing tensile properties of extruded AZ31 rod by introducing gradient bimodal microstructure [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 3673
|
20 |
Chen G P, Zhou T R, Yan H, et al. Effect of predeformation manner on semi-solid structure of AZ61 magnesium alloy in sima process [J]. Acta Metall. Sin., 2008, 21: 197
|
21 |
Azeem M A, Tewari A, Mishra S, et al. Development of novel grain morphology during hot extrusion of magnesium AZ21 alloy [J]. Acta Mater., 2010, 58: 1495
|
22 |
Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Mater., 2018, 160: 97
|
23 |
Wang Y, Li F, Bian N, et al. Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion [J]. J. Magnes. Alloy., 2023, 11: 1791
|
24 |
Xia K, Wang J T, Wu X, et al. Equal channel angular pressing of magnesium alloy AZ31 [J]. Mater. Sci. Eng., 2005, A410-411: 324
|
25 |
Li Y Q, Li F, Niu W T, et al. Grain refinement and strengthening mechanism of AZ31 magnesium alloy formed by pre-upsetting alternating forward extrusion [J]. J. Alloys Compd., 2024, 977: 173421
|
26 |
Li F, Zeng X, Bian N. Microstructure of AZ31 magnesium alloy produced by continuous variable cross-section direct extrusion (CVCDE) [J]. Mater. Lett., 2014, 135: 79
|
27 |
Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
|
28 |
Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, A529: 300
|
29 |
Deng J F, Tian J, Zhou Y C, et al. Plastic deformation mechanism and hardening mechanism of rolled rare-earth magnesium alloy thin sheet [J]. Mater. Des., 2022, 218: 110678
|
30 |
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
|
31 |
Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
|
|
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
|
32 |
Randle V, Davies H, Cross I. Grain boundary misorientation distributions [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 3
|
33 |
Liu X, Liu Y, Jin B, et al. Microstructure evolution and mechanical properties of a SMATed Mg alloy under in situ SEM tensile testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
|
34 |
Han T Z, Huang G S, Li H, et al. Strength-ductility balance of AZ31 magnesium alloy via accumulated extrusion bonding combined with two-stage artificial cooling [J]. J. Magnes. Alloy., 2023, 11: 1549
|
35 |
Wang Y, Xia Z Y, Xiong J P, et al. Enhancing the ductility of cast Mg-Li alloys via dispersed α-Mg phase mitigating the dimension and distribution of interspersed eutectics along grain boundaries [J]. J. Magnes. Alloy., 2024, 12: 4722
|
36 |
Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloy., 2022, 10: 1476
|
37 |
Zhang H, Yan Y, Fan J F, et al. Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression [J]. Mater. Sci. Eng., 2014, A618: 540
|
38 |
Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|