Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 488-498    DOI: 10.11900/0412.1961.2024.00385
Research paper Current Issue | Archive | Adv Search |
Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure
ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong()
Jiangxi Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
Cite this article: 

ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure. Acta Metall Sin, 2025, 61(3): 488-498.

Download:  HTML  PDF(3217KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The magnesium alloy exhibits a notable plasticity limitation due to its hcp structure. In recent years, the development of a bimodal structure, consisting of deformed coarse grains and recrystallized fine grains, has emerged as an effective strategy to balance the strength and plasticity of magnesium alloys, offering a new avenue for property. This optimization study investigates the formation mechanism and deformation behavior of the bimodal structure in AZ31 magnesium alloy by controlling the extrusion process. The formation of the bimodal structure is attributed to the incomplete dynamic recrystallization during plastic deformation and the particle-stimulated nucleation effect of the secondary phase. During deformation, fine grains endure higher stresses, while coarse grains accommodate more strain. The fine grains significantly contribute to the improved strength of the AZ31 magnesium alloy, while the coordinated deformation of the coarse grains ensures excellent plasticity. Leveraging the superior deformation capability of the bimodal structure, fine-grained AZ31 magnesium alloy was successfully fabricated through further extrusion, achieving outstanding mechanical properties: a tensile strength of 265 MPa, a yield strength of 112 MPa, and an elongation of 19%. This demonstrates the synergistic enhancement of strength and plasticity.

Key words:  deformed magnesium alloy      bimodal structure      deformation behavior      DRX mechanism      synergistic enhancement of strength and plasticity     
Received:  15 November 2024     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2022YFC2905204);National Natural Science Foundation of China(52061028);Major Research and Development Projects of Jiangxi Province(20223-BBE51021);Maturation and Engineering of Major Scientific and Technological Achievements in Jiangxi Province(20243BDD40002);Program of One Thousand Talented People of Jiangxi(S2021GDKX-0864)
Corresponding Authors:  LIU Yong, professor, Tel: 13576087535, E-mail: liuyong@ncu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00385     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/488

Fig.1  Schematics of the extrusion process and sampling positions of AZ31 magnesium alloy (ED—extrusion direction)
(a, b) extrusion dies with extrusion ratios of 2.5 (a) and 5 (b)
(c) schematic of extrusion direction (d, e) sampling diagrams of ϕ330 mm (d) and ϕ140-220 mm (e) (R—radius) (f) dimensions of tensile specimens (unit: mm)
Fig.2  XRD spectra of alloys (a); statistical analysis of coarse grain size (b), OM image (c), and SEM image and EDS result (d) of coarse-grained AZ31 magnesium alloy
Fig.3  Typical OM images of bimodal structure AZ31 magnesium alloy (Blue circle is fine equiaxed grains (FEGs), yellow circle is row stacked grains (RSGs), and red circle is long elongated grains (LEGs); DRX—dynamic recrystallization)
(a) //ED (b) ⊥ED
Fig.4  Distributions of the secondary phase of the bimodal structure AZ31 magnesium alloy (The black arrows indicate Mg17Al12; inset in Fig.4a shows the locally magnified image; inset in Fig.4b is the compositions of the points)
(a) //ED (b) ⊥ED
Fig.5  OM images of microstructure of fine-grained AZ31 magnesium alloy
(a) //ED (b) ⊥ED
Fig.6  Statistics of DRXed grain size and volume fraction in bimodal structure (a) and fine-grained (b) AZ31 magnesium alloys
Fig.7  Cross-sectional microstructures of tensile samples of bimodal structure AZ31 magnesium alloy after ~2% (a), ~10% (b), and ~18% (c) deformation (Arrows in Figs.7a-c indicate the microcracks); typical bimodal deformable structure (d, e); and sampling positions (f)
Fig.8  Mechanical properties of bimodal structure (a, b) and fine-grained (c, d) AZ31 magnesium alloys (UTS—ultimate tensile strength, YS—yield strength, EL—elongation)
(a, c) engineering stress-strain curves (b, d) strength and elongation
Fig.9  Engineering stress-strain curves (a), work hardening curves (Inset in Fig.9b is the locally magnified curves) (b); and tensile fracture morphologies of coarse-grained (c), bimodal structure (d), and fine-grained (e) AZ31 magnesium alloys (The red dashed line in the image outlines the fractured second phase)
Reinforcement methodYS / MPaUTS / MPaEL / %Ref.
Coarse-grain43 ± 4170 ± 913 ± 0.9This work
Bimodal structure77 ± 9217 ± 1218 ± 0.7
Fine-grain112 ± 12265 ± 1419 ± 1.0
Grain refinement-200 ± 616 ± 1.0[7]
Suppressing intergranular deformation380 ± 7430 ± 1113 ± 0.8[22]
Grain refinement and texture change220 ± 4253 ± 713 ± 0.9[23]
Grain refinement250 ± 7310 ± 1014 ± 1.0[24]
Grain refinement203 ± 6200 ± 1012 ± 1.0[25]
Grain refinement-290 ± 513 ± 0.6[26]
Table 1  Comparisons of mechanical properties of the AZ31 magnesium alloy conventionally and/or severely deformed by means of various metal forming techniques[7,22-26]
Fig.10  Mechanism of bimodal structure formation in AZ31 magnesium alloy
(a) coarse-grained AZ31 (b) bimodal structure AZ31 (c) fine-grained AZ31 (d-f) nucleation mechanisms in dynamically recrystallized grains
1 Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metall. Sin., 2008, 21: 313
2 Pan F S, Jiang B. Development and application of plastic processing technology of magnesium alloy [J]. Acta Metall. Sin., 2021, 57: 1362
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
3 Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
4 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
5 Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
刘 勇, 曾 刚, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
6 Xu J, Wang X W, Shirooyeh M, et al. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion [J]. J. Mater. Sci., 2015, 50: 7424
7 Muralidhar A, Narendranath S, Shivananda Nayaka H. Effect of equal channel angular pressing on AZ31 wrought magnesium alloys [J]. J. Magnes. Alloy., 2013, 1: 336
8 Rao X X, Wu Y P, Pei X B, et al. Influence of rolling temperature on microstructural evolution and mechanical behavior of AZ31 alloy with accumulative roll bonding [J]. Mater. Sci. Eng., 2019, A754: 112
9 Han T Z, Huang G S, Deng Q Y, et al. Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding [J]. J. Alloy. Compd., 2018, 745: 599
10 Prasad S V S, Prasad S B, Verma K, et al. The role and significance of magnesium in modern day research—A review [J]. J. Magnes. Alloy., 2022, 10: 1
11 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
12 Rong W, Zhang Y, Wu Y J, et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys [J]. Mater. Sci. Eng., 2019, A740-741: 262
13 Hu K, Li C Y, Xu G J, et al. Effect of extrusion temperature on the microstructure and mechanical properties of low Zn containing wrought Mg alloy micro-alloying with Mn and La-rich misch metal [J]. Mater. Sci. Eng., 2019, A742: 692
14 Chen J J, Tang C P, Xie H M, et al. Research progress of bimodal-grained structure in copper aluminum and magnesium alloys [J]. Trans. Mater. Heat Treat., 2022, 43: 1
陈佳俊, 唐昌平, 谢红梅 等. 双峰分布晶粒在铜、铝、镁合金中的研究进展 [J]. 材料热处理学报, 2022, 43: 1
doi: 10.13289/j.issn.1009-6264.2021-0465
15 Zha M, Zhang X H, Zhang H, et al. Achieving bimodal microstructure and enhanced tensile properties of Mg-9Al-1Zn alloy by tailoring deformation temperature during hard plate rolling (HPR) [J]. J. Alloys Compd., 2018, 765: 1228
16 Shokri M, Zarei-Hanzaki A, Abedi H R, et al. On the microstructure and RE-texture evolution during hot tensile deformation of Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Res. Technol., 2021, 15: 6974
17 Tong L B, Zheng M Y, Cheng L R, et al. Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg-Zn-Ca alloy [J]. Mater. Sci. Eng., 2013, A569: 48
18 Bai S W, Fang G, Zhou J. Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation [J]. J. Mater. Process. Technol., 2020, 275: 116361
19 Shang Q, Wu F, Chen H B, et al. Enhancing tensile properties of extruded AZ31 rod by introducing gradient bimodal microstructure [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 3673
20 Chen G P, Zhou T R, Yan H, et al. Effect of predeformation manner on semi-solid structure of AZ61 magnesium alloy in sima process [J]. Acta Metall. Sin., 2008, 21: 197
21 Azeem M A, Tewari A, Mishra S, et al. Development of novel grain morphology during hot extrusion of magnesium AZ21 alloy [J]. Acta Mater., 2010, 58: 1495
22 Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Mater., 2018, 160: 97
23 Wang Y, Li F, Bian N, et al. Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion [J]. J. Magnes. Alloy., 2023, 11: 1791
24 Xia K, Wang J T, Wu X, et al. Equal channel angular pressing of magnesium alloy AZ31 [J]. Mater. Sci. Eng., 2005, A410-411: 324
25 Li Y Q, Li F, Niu W T, et al. Grain refinement and strengthening mechanism of AZ31 magnesium alloy formed by pre-upsetting alternating forward extrusion [J]. J. Alloys Compd., 2024, 977: 173421
26 Li F, Zeng X, Bian N. Microstructure of AZ31 magnesium alloy produced by continuous variable cross-section direct extrusion (CVCDE) [J]. Mater. Lett., 2014, 135: 79
27 Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
28 Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, A529: 300
29 Deng J F, Tian J, Zhou Y C, et al. Plastic deformation mechanism and hardening mechanism of rolled rare-earth magnesium alloy thin sheet [J]. Mater. Des., 2022, 218: 110678
30 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
31 Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
32 Randle V, Davies H, Cross I. Grain boundary misorientation distributions [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 3
33 Liu X, Liu Y, Jin B, et al. Microstructure evolution and mechanical properties of a SMATed Mg alloy under in situ SEM tensile testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
34 Han T Z, Huang G S, Li H, et al. Strength-ductility balance of AZ31 magnesium alloy via accumulated extrusion bonding combined with two-stage artificial cooling [J]. J. Magnes. Alloy., 2023, 11: 1549
35 Wang Y, Xia Z Y, Xiong J P, et al. Enhancing the ductility of cast Mg-Li alloys via dispersed α-Mg phase mitigating the dimension and distribution of interspersed eutectics along grain boundaries [J]. J. Magnes. Alloy., 2024, 12: 4722
36 Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloy., 2022, 10: 1476
37 Zhang H, Yan Y, Fan J F, et al. Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression [J]. Mater. Sci. Eng., 2014, A618: 540
38 Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[3] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[4] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[5] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[6] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
[7] LIU Yongkang, HUANG Haiyou, XIE Jianxin. ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY[J]. 金属学报, 2015, 51(1): 40-48.
[8] DONG Danyang, LIU Yang, WANG Lei, SU Liangjin. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL[J]. 金属学报, 2013, 49(2): 159-166.
[9] DONG Danyang, LIU Yang, WANG Lei, YANG Yuling, LI Jinfeng, JIN Mengmeng. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS[J]. 金属学报, 2013, 49(12): 1493-1500.
[10] LIU Yang WANG Lei HE Sisi FENG Fei LV Xudong ZHANG Beijiang. EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2012, 48(1): 49-55.
[11] TANG Zhengyou WU Zhiqiang ZAN Na DING Hua. MICROSTRUCTURE EVOLUTION AND DEFORMATION BEHAVIOR OF HIGH MANGANESE TRIP/TWIP SYMBIOTIC EFFECT STEELS UNDER HIGH-SPEED DEFORMATION[J]. 金属学报, 2011, 47(11): 1426-1433.
[12] Li Rong. Finite-element modeling of pure magnesium swaging[J]. 金属学报, 2006, 42(4): 394-398 .
No Suggested Reading articles found!