|
|
Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy |
WANG Sheng1, ZHU Yancheng1, PAN Hucheng1( ), LI Jingren1, ZENG Zhihao1, QIN Gaowu1,2( ) |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Research Center for Strategic Materials and Components, Shenyang University of Chemical Technology, Shenyang 110142, China |
|
Cite this article:
WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy. Acta Metall Sin, 2025, 61(3): 499-508.
|
Abstract To examine the effects of Yb addition on wrought Mg alloys, this study evaluates the influence of Yb content (0%-1.0%, mass fraction) on the microstructure, room-temperature, and high-temperature mechanical properties of the Mg-9Gd-4Y-1.2Zn-0.3Zr (mass fraction, %) alloy (GWZK). Mechanical performance tests and microstructural characterizations were conducted on alloy samples after solid solution treatment, extrusion, and aging. The results reveal that the GWZK-0.2Yb alloy exhibits superior mechanical properties, achieving tensile yield strength (TYS) of 456 MPa, which is an increase of approximately 45 MPa compared to the Yb-free GWZK-0Yb sample, and an ultimate tensile strength of 509 MPa. Furthermore, at 250 oC, the GWZK-0.2Yb alloy demonstrates a high yield strength of 326 MPa and ductility of 10.6%, indicating a synergistic improvement in strength and plasticity relative to the Yb-free sample. Microstructural analysis shows that the addition of 0.2%Yb suppresses the formation of long-period stacking ordered (LPSO) phases in the GWZK alloy while promoting the precipitation of β′ and γ′ phases during aging. The enhancement in strength is primarily attributed to the lamellar LPSO within the α-Mg matrix post-aging, as well as the dense precipitation of β′ and γ′ phases. However, increasing the Yb content to 0.5% reduces ductility at both room and high temperatures, primarily due to the high volume fraction of brittle β phases. Further increasing the Yb content to 1.0% leads to simultaneous decrease in strength and ductility at both temperature ranges. This degradation is attributed to the increased presence of the β phase, which reduces the number density of β′ and γ′ phases precipitated during the aging of the GWZK-1.0Yb alloy.
|
Received: 04 November 2024
|
|
Fund: National Key Research and Development Program of China(2023YFB3710900);National Natural Science Foundation of China(U2167213);Fundamental Research Funds for the Central Universities(N2202020);XingLiao Talent Plan(XLYC2203202) |
Corresponding Authors:
PAN Hucheng, professor, Tel: 13166643462, E-mail: panhc@atm.neu.edu.cn; QIN Gaowu, professor, Tel: (024)83691565, E-mail: qingw@smm.neu.edu.cn
|
1 |
Zheng X B, Du W B, Wang Z H, et al. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging [J]. Mater. Lett., 2018, 212: 155
|
2 |
Wang S, Pan H C, Xie D S, et al. Grain refinement and strength enhancement in Mg wrought alloys: A review [J]. J. Magnes. Alloy., 2023, 11: 4128
|
3 |
You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magnes. Alloy., 2017, 5: 239
|
4 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
|
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
5 |
Zha M, Wang S Q, Fang Y, et al. Advancement in research of rolled magnesium alloys with high performance [J]. J. Netshape Form. Eng., 2020, 12(5): 20
|
|
查 敏, 王思清, 方 圆 等. 高性能轧制镁合金研究进展 [J]. 精密成形工程, 2020, 12(5): 20
|
6 |
Ding W J, Zeng X Q. Research and applications of magnesium in China [J]. Acta Metall. Sin., 2010, 46: 1450
|
|
丁文江, 曾小勤. 中国Mg材料研发与应用 [J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
|
7 |
Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
|
|
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
|
8 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
|
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
9 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
10 |
Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion [J]. J. Magnes. Alloy., 2013, 1: 54
|
11 |
Qin G W, Xie H B, Pan H C, et al. A new class of ordered structure between crystals and quasicrystals [J]. Acta Metall. Sin., 2018, 54: 1490
doi: 10.11900/0412.1961.2018.00357
|
|
秦高梧, 谢红波, 潘虎成 等. 一类介于晶体与准晶体之间的有序结构 [J]. 金属学报, 2018, 54: 1490
doi: 10.11900/0412.1961.2018.00357
|
12 |
Xu C, Zheng M Y, Xu S W, et al. Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing [J]. Mater. Sci. Eng., 2012, A547: 93
|
13 |
Zeng X Q, Wu Y J, Peng L M, et al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy [J]. Acta Metall. Sin., 2010, 46: 1041
|
|
曾小勤, 吴玉娟, 彭立明 等. Mg-Gd-Zn-Zr合金中的LPSO结构和时效相 [J]. 金属学报, 2010, 46: 1041
doi: 10.3724/SP.J.1037.2009.00833
|
14 |
Fan M Y, Cui Y, Zhang Y, et al. Achieving high strength-ductility synergy in a Mg97Y1Zn1Ho1 alloy via a nano-spaced long-period stacking-ordered phase [J]. J. Magnes. Alloy., 2023, 11: 1321
|
15 |
Zhang D D, Yang S, Meng F Z, et al. Compressive creep behavior of extruded Mg-4Sm-2Yb-0.6Zn-0.4Zr alloy [J]. Mater. Sci. Eng., 2021, A809: 140929
|
16 |
Matsuda M, Ando S, Nishida M. Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase [J]. Mater. Trans., 2005, 46: 361
|
17 |
Tong L B, Chu J H, Sun W T, et al. Achieving an ultra-high strength and moderate ductility in Mg-Gd-Y-Zn-Zr alloy via a decreased-temperature multi-directional forging [J]. Mater. Charact., 2021, 171: 110804
|
18 |
Zhang D D, Zhang D P, Bu F Q, et al. Excellent ductility and strong work hardening effect of as-cast Mg-Zn-Zr-Yb alloy at room temperature [J]. J. Alloy. Compd., 2017, 728: 404
|
19 |
Xie H, Wu G H, Zhang X L, et al. The role of Yb content on the microstructural evolution and mechanical characteristics of cast Mg-9Gd-0.5Zn-0.2Zr alloy [J]. Mater. Sci. Eng., 2021, A817: 141292
|
20 |
Yu Z J, Xu C, Meng J, et al. Microstructure evolution and mechanical properties of a high strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing [J]. Mater. Sci. Eng., 2017, A703: 348
|
21 |
Yan Z X, Yang Q, Ma R, et al. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg-Gd-Sm-Zr extruded alloys [J]. Mater. Sci. Eng., 2022, A831: 142264
|
22 |
Yan Z H, Yu Y D, Qian J H, et al. Fabrication of high-strength Mg-Gd-Nd-Zn-Sn-Zr alloy via extrusion and aging [J]. Met. Mater. Int., 2021, 27: 4182
|
23 |
Liu Y H, Zhang Z R, Wang J, et al. A novel Mg-Gd-Y-Zn-Cu-Ni alloy with excellent combination of strength and dissolution via peak-aging treatment [J]. J. Magnes. Alloy., 2023, 11: 720
|
24 |
Xue Z Y, Ren Y J, Luo W B, et al. Effect of aging treatment on the precipitation behavior and mechanical properties of Mg-9Gd-3Y-1.5Zn-0.5Zr alloy [J]. J. Mater. Eng. Perform., 2017, 26: 5963
|
25 |
Zhang Y, Rong W, Wu Y J, et al. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54: 160
doi: 10.1016/j.jmst.2020.04.031
|
26 |
Zhang D D, Liu C M, Jiang S N, et al. Effects of extrusion process on microstructure, precipitates and mechanical properties of Mg-Gd-Y-Zr-Ag alloys [J]. Mater. Sci. Eng., 2022, A856: 143990
|
27 |
Wang K, Wang J F, Dou X X, et al. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52: 72
doi: 10.1016/j.jmst.2020.04.013
|
28 |
Liu H, Bai J, Yan K, et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys during annealing at 773K [J]. Mater. Des., 2016, 93: 9
|
29 |
Fan T W, Tang B Y, Peng L M, et al. First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium [J]. Scr. Mater., 2011, 64: 942
|
30 |
Mansoor A, Du W B, Yu Z J, et al. Improved mechanical performance of double-pass extruded Mg-Gd-Er-Zr alloys with various rare earth contents [J]. Mater. Sci. Eng., 2022, A840: 142922
|
31 |
Li S J, Jin J F, Song Y H, et al. Multimodal microstructure of Mg-Gd-Y alloy through an integrated simulation of “process-structure-property” [J]. Acta Metall. Sin., 2022, 58: 114
|
|
李少杰, 金剑锋, 宋宇豪 等. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 [J]. 金属学报, 2022, 58: 114
doi: 10.11900/0412.1961.2021.00222
|
32 |
Luo J, Yan H, Lu L W, et al. Cold rollability improvement by twinning and twin-slip synergy in an Mg-Zn-Gd alloy with rare earth texture [J]. J. Alloys Compd., 2021, 883: 160813
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|