Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 499-508    DOI: 10.11900/0412.1961.2024.00367
Research paper Current Issue | Archive | Adv Search |
Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy
WANG Sheng1, ZHU Yancheng1, PAN Hucheng1(), LI Jingren1, ZENG Zhihao1, QIN Gaowu1,2()
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Research Center for Strategic Materials and Components, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy. Acta Metall Sin, 2025, 61(3): 499-508.

Download:  HTML  PDF(4149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To examine the effects of Yb addition on wrought Mg alloys, this study evaluates the influence of Yb content (0%-1.0%, mass fraction) on the microstructure, room-temperature, and high-temperature mechanical properties of the Mg-9Gd-4Y-1.2Zn-0.3Zr (mass fraction, %) alloy (GWZK). Mechanical performance tests and microstructural characterizations were conducted on alloy samples after solid solution treatment, extrusion, and aging. The results reveal that the GWZK-0.2Yb alloy exhibits superior mechanical properties, achieving tensile yield strength (TYS) of 456 MPa, which is an increase of approximately 45 MPa compared to the Yb-free GWZK-0Yb sample, and an ultimate tensile strength of 509 MPa. Furthermore, at 250 oC, the GWZK-0.2Yb alloy demonstrates a high yield strength of 326 MPa and ductility of 10.6%, indicating a synergistic improvement in strength and plasticity relative to the Yb-free sample. Microstructural analysis shows that the addition of 0.2%Yb suppresses the formation of long-period stacking ordered (LPSO) phases in the GWZK alloy while promoting the precipitation of β′ and γ′ phases during aging. The enhancement in strength is primarily attributed to the lamellar LPSO within the α-Mg matrix post-aging, as well as the dense precipitation of β′ and γ′ phases. However, increasing the Yb content to 0.5% reduces ductility at both room and high temperatures, primarily due to the high volume fraction of brittle β phases. Further increasing the Yb content to 1.0% leads to simultaneous decrease in strength and ductility at both temperature ranges. This degradation is attributed to the increased presence of the β phase, which reduces the number density of β′ and γ′ phases precipitated during the aging of the GWZK-1.0Yb alloy.

Key words:  wrought Mg alloy      mechanical property      microstructure evolution      long-period stacking ordered phase      Yb alloying     
Received:  04 November 2024     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2023YFB3710900);National Natural Science Foundation of China(U2167213);Fundamental Research Funds for the Central Universities(N2202020);XingLiao Talent Plan(XLYC2203202)
Corresponding Authors:  PAN Hucheng, professor, Tel: 13166643462, E-mail: panhc@atm.neu.edu.cn;
QIN Gaowu, professor, Tel: (024)83691565, E-mail: qingw@smm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00367     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/499

Fig.1  Engineering stress-strain curves of peak-aged GWZK-xYb alloys (a, b) and extruded GWZK-xYb alloys (c) at different temperatures and comparison of high-strength/peak-aged Mg-Gd series alloys prepared by similar extrusion process[20~26] (d) (Black and red curves are the fitting curves of tensile yield strength (TYS) and untimate tensile strength (UTS) of high strength Mg-Gd series alloys, respectively)
(a, c) at room temperature (25 oC) (b) at 250 oC

Alloy

PA RTPA ETES RT

TYS

MPa

UTS

MPa

EL

%

TYS

MPa

UTS

MPa

EL

%

TYS

MPa

UTS

MPa

EL

%

GWZK-0Yb4114716.63103577.734941411.1
GWZK-0.2Yb4565094.332637310.63243949.6
GWZK-0.5Yb4514961.93273799.03534095.0
GWZK-1.0Yb4184431.73123445.83634083.5
Table 1  Tensile properties of peak-aged GWZK-xYb alloy tested at room temperature and 250 oC and extruded GWZK-xYb alloy tested at room temperature
Fig.2  Low (a, c, e, g) and high magnified (b, d, f, h) SEM images of GWZK-0Yb (a, b), GWZK-0.2Yb (c, d), GWZK-0.5Yb (e, f), and GWZK-1.0Yb (g, h) alloys in the solid solution state (Insets in Figs.2d, f, and h are the corresponding EDS mappings of Yb element; LPSO represent long-period stacking ordered)
PointMgGdYZnYb
A88.733.492.954.820
B89.903.072.544.360.14
C89.113.652.674.360.22
D83.357.223.095.530.81
E81.726.803.547.000.94
F78.516.314.076.144.98
Table 2  EDS results corresponding to each point in Figs.2b, d, f, and h
Fig.3  OM images of as-extruded GWZK-0Yb (a), GWZK-0.2Yb (b), GWZK-0.5Yb (c), and GWZK-1.0Yb (d) alloys (ED—extrusion direction, DRX—dynamic recrystallization)
Fig.4  SEM images of GWZK-0Yb (a), GWZK-0.2Yb (b), GWZK-0.5Yb (c, e), and GWZK-1.0Yb (d) alloys in as-extruded state; and volume fraction of blocky phases in different samples (f)
PointMgGdYZnYb
G87.803.503.554.950.20
H83.956.713.565.130.65
Table 3  EDS results corresponding to each point in Fig.4e
Fig.5  TEM characterizations of the peak-aged GWZK-0Yb (a-c), GWZK-0.2Yb (d-f), and GWZK-0.5Yb (g-i) alloys (White lines Figs.5b, e, and h represent bending and twisting)
Fig.6  Low (a, b) and high (c) magnified HAADF-STEM images and corresponding EDS mappings of the peak-aged GWZK-0.2Yb alloy (Inset in Fig.3c is SAED pattern of the layered region (under B = <21¯10>); B —the incident direction of the electron beam)
1 Zheng X B, Du W B, Wang Z H, et al. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging [J]. Mater. Lett., 2018, 212: 155
2 Wang S, Pan H C, Xie D S, et al. Grain refinement and strength enhancement in Mg wrought alloys: A review [J]. J. Magnes. Alloy., 2023, 11: 4128
3 You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magnes. Alloy., 2017, 5: 239
4 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
5 Zha M, Wang S Q, Fang Y, et al. Advancement in research of rolled magnesium alloys with high performance [J]. J. Netshape Form. Eng., 2020, 12(5): 20
查 敏, 王思清, 方 圆 等. 高性能轧制镁合金研究进展 [J]. 精密成形工程, 2020, 12(5): 20
6 Ding W J, Zeng X Q. Research and applications of magnesium in China [J]. Acta Metall. Sin., 2010, 46: 1450
丁文江, 曾小勤. 中国Mg材料研发与应用 [J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
7 Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
8 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
9 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
10 Li X, Qi W, Zheng K, et al. Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion [J]. J. Magnes. Alloy., 2013, 1: 54
11 Qin G W, Xie H B, Pan H C, et al. A new class of ordered structure between crystals and quasicrystals [J]. Acta Metall. Sin., 2018, 54: 1490
doi: 10.11900/0412.1961.2018.00357
秦高梧, 谢红波, 潘虎成 等. 一类介于晶体与准晶体之间的有序结构 [J]. 金属学报, 2018, 54: 1490
doi: 10.11900/0412.1961.2018.00357
12 Xu C, Zheng M Y, Xu S W, et al. Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing [J]. Mater. Sci. Eng., 2012, A547: 93
13 Zeng X Q, Wu Y J, Peng L M, et al. LPSO structure and aging phases in Mg-Gd-Zn-Zr alloy [J]. Acta Metall. Sin., 2010, 46: 1041
曾小勤, 吴玉娟, 彭立明 等. Mg-Gd-Zn-Zr合金中的LPSO结构和时效相 [J]. 金属学报, 2010, 46: 1041
doi: 10.3724/SP.J.1037.2009.00833
14 Fan M Y, Cui Y, Zhang Y, et al. Achieving high strength-ductility synergy in a Mg97Y1Zn1Ho1 alloy via a nano-spaced long-period stacking-ordered phase [J]. J. Magnes. Alloy., 2023, 11: 1321
15 Zhang D D, Yang S, Meng F Z, et al. Compressive creep behavior of extruded Mg-4Sm-2Yb-0.6Zn-0.4Zr alloy [J]. Mater. Sci. Eng., 2021, A809: 140929
16 Matsuda M, Ando S, Nishida M. Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase [J]. Mater. Trans., 2005, 46: 361
17 Tong L B, Chu J H, Sun W T, et al. Achieving an ultra-high strength and moderate ductility in Mg-Gd-Y-Zn-Zr alloy via a decreased-temperature multi-directional forging [J]. Mater. Charact., 2021, 171: 110804
18 Zhang D D, Zhang D P, Bu F Q, et al. Excellent ductility and strong work hardening effect of as-cast Mg-Zn-Zr-Yb alloy at room temperature [J]. J. Alloy. Compd., 2017, 728: 404
19 Xie H, Wu G H, Zhang X L, et al. The role of Yb content on the microstructural evolution and mechanical characteristics of cast Mg-9Gd-0.5Zn-0.2Zr alloy [J]. Mater. Sci. Eng., 2021, A817: 141292
20 Yu Z J, Xu C, Meng J, et al. Microstructure evolution and mechanical properties of a high strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing [J]. Mater. Sci. Eng., 2017, A703: 348
21 Yan Z X, Yang Q, Ma R, et al. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg-Gd-Sm-Zr extruded alloys [J]. Mater. Sci. Eng., 2022, A831: 142264
22 Yan Z H, Yu Y D, Qian J H, et al. Fabrication of high-strength Mg-Gd-Nd-Zn-Sn-Zr alloy via extrusion and aging [J]. Met. Mater. Int., 2021, 27: 4182
23 Liu Y H, Zhang Z R, Wang J, et al. A novel Mg-Gd-Y-Zn-Cu-Ni alloy with excellent combination of strength and dissolution via peak-aging treatment [J]. J. Magnes. Alloy., 2023, 11: 720
24 Xue Z Y, Ren Y J, Luo W B, et al. Effect of aging treatment on the precipitation behavior and mechanical properties of Mg-9Gd-3Y-1.5Zn-0.5Zr alloy [J]. J. Mater. Eng. Perform., 2017, 26: 5963
25 Zhang Y, Rong W, Wu Y J, et al. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54: 160
doi: 10.1016/j.jmst.2020.04.031
26 Zhang D D, Liu C M, Jiang S N, et al. Effects of extrusion process on microstructure, precipitates and mechanical properties of Mg-Gd-Y-Zr-Ag alloys [J]. Mater. Sci. Eng., 2022, A856: 143990
27 Wang K, Wang J F, Dou X X, et al. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52: 72
doi: 10.1016/j.jmst.2020.04.013
28 Liu H, Bai J, Yan K, et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys during annealing at 773K [J]. Mater. Des., 2016, 93: 9
29 Fan T W, Tang B Y, Peng L M, et al. First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium [J]. Scr. Mater., 2011, 64: 942
30 Mansoor A, Du W B, Yu Z J, et al. Improved mechanical performance of double-pass extruded Mg-Gd-Er-Zr alloys with various rare earth contents [J]. Mater. Sci. Eng., 2022, A840: 142922
31 Li S J, Jin J F, Song Y H, et al. Multimodal microstructure of Mg-Gd-Y alloy through an integrated simulation of “process-structure-property” [J]. Acta Metall. Sin., 2022, 58: 114
李少杰, 金剑锋, 宋宇豪 等. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 [J]. 金属学报, 2022, 58: 114
doi: 10.11900/0412.1961.2021.00222
32 Luo J, Yan H, Lu L W, et al. Cold rollability improvement by twinning and twin-slip synergy in an Mg-Zn-Gd alloy with rare earth texture [J]. J. Alloys Compd., 2021, 883: 160813
[1] OUYANG Sihui, SHE Jia, CHEN Xianhua, PAN Fusheng. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications[J]. 金属学报, 2025, 61(3): 455-474.
[2] PANG Mengyao, WU Ruizhi, MA Xiaochun, JIN Siyuan, YU Zhe, Boris Krit. Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy[J]. 金属学报, 2025, 61(3): 509-520.
[3] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[4] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
[5] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[6] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[7] ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. 金属学报, 2025, 61(1): 177-190.
[8] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[9] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[10] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[11] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[12] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
[13] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[14] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[15] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
No Suggested Reading articles found!