Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (2): 349-360    DOI: 10.11900/0412.1961.2023.00004
Research paper Current Issue | Archive | Adv Search |
Micro-Deformation Behavior of Austenite Containing Chemical Boundary in a Medium Mn Steel: A Crystal Plasticity Modeling
JIA Chunni1, LIU Tengyuan1,2, ZHENG Chengwu1(), WANG Pei1, LI Dianzhong1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

JIA Chunni, LIU Tengyuan, ZHENG Chengwu, WANG Pei, LI Dianzhong. Micro-Deformation Behavior of Austenite Containing Chemical Boundary in a Medium Mn Steel: A Crystal Plasticity Modeling. Acta Metall Sin, 2025, 61(2): 349-360.

Download:  HTML  PDF(1625KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chemical boundaries (CBs) delineate two areas within a continuous lattice that have same structures but exhibit a sharp chemical discontinuity. CBs can be seen as a unique planar defect that is distinct in certain aspects from traditional physical interfaces such as phase boundaries and grain boundaries (GBs). Recently, GBs have been established within the austenite of medium Mn steels; they have been proven to substantially enhance the stability of austenite. This allows austenite to be easily retained at room temperature and offers additional possibilities for managing its mechanical stability. In this study, a crystal plasticity modeling was performed to simulate the deformation behavior of austenite containing a CB. First, an extended dislocation-based crystal plastic model that incorporates the deformation-induced martensitic transformation and stacking fault energy was developed. The inverse Nishiyama-Wassermann (N-W) relation was used to accurately describe the orientation relationship between austenite and newly formed martensite. The Mn content on both sides of the CB is taken as a state variable to calculate the stacking fault energy. This leads to varying responses in the deformation-induced martensitic transformation and dislocation slip within a single austenite grain. Results reveal a strain incompatibility between Mn-rich and Mn-poor austenite that causes a geometrically necessary dislocation to accumulate near the CB. Furthermore, the deformation-induced martensitic transformation on both sides of the CB behaves differently, leading to a “spectral” distribution of mechanical stability within a single austenite grain. This heterogeneity in the mechanical stability of austenite is highly beneficial. It allows a gradual deformation-induced phase transformation throughout the entire deformation process, which is crucial for enhancing the strength and plasticity of transformation induced plasticity (TRIP)-aided steels simultaneously.

Key words:  medium Mn steel      austenite      chemical boundary      deformation-induced martensite transformation      crystal plasticity     
Received:  30 December 2022     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(52301181);National Natural Science Foundation of China(52071322)
Corresponding Authors:  ZHENG Chengwu, professor, Tel: (024)23971973, E-mail: cwzheng@imr.ac.cn;
LI Dianzhong, professor, Tel: (024)23971281, E-mail: dzli@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00004     OR     https://www.ams.org.cn/EN/Y2025/V61/I2/349

Fig.1  Illustration of the intermediate configurations resulting from multiplicative decomposition of the deformation gradient in crystal plasticity model ( Fe——elastic deformation gradient, Fp—plastic deformation gradient)
αMs=msαnsααMs=msαnsα
1011¯111/6701111¯1/6
2101¯111/68101¯11¯1/6
311¯0111/6911011¯1/6
4011¯1¯11/610011111¯/6
51011¯11/611101111¯/6
61101¯11/61211¯0111¯/6
Table 1  Slip systems of the fcc crystal
βtrxtrytrztrrtrθtr
1[100][010][001][010]+10.26°
2[100][010][001][010]-10.26°
3[100][010][001][001]+10.26°
4[100][010][001][001]-10.26°
5[010][100][001][100]+10.26°
6[010][100][001][100]-10.26°
7[010][100][001][001]+10.26°
8[010][100][001][001]-10.26°
9[001][100][010][100]+10.26°
10[001][100][010][100]-10.26°
11[001][100][010][010]+10.26°
12[001][100][010][010]-10.26°
Table 2  Martensite transformation systems of the fcc crystal following the inverse Nishiyama-Wassermann (N-W) relation used in the crystal plasticity model

δ

α

123456789101112
10-3/2-3/2000000000
23/20-3/2000000000
33/23/20000000000
40000-3/2-3/2000000
50003/203/2000000
60003/2-3/20000000
70000000-3/2-3/2000
80000003/203/2000
90000003/2-3/20000
1000000000003/23/2
11000000000-3/203/2
12000000000-3/2-3/20
Table 3  Projection matrix from the fcc slip systems to the fault-band systems
δMtw=mtwδntwδαMtw=mtwδntwδ
12¯11111/672¯1¯111¯1/6
21¯21¯111/681¯1211¯1/6
3112¯111/6921¯111¯1/6
42¯1¯1¯1¯11/61012¯1¯111¯/6
5121¯1¯11/611111111¯/6
61¯12¯1¯11/6121¯1¯2¯111¯/6
Table 4  Fault band systems of the fcc crystal structure
Fig.2  Self-consistent integration of kinematic quantities within fixed internal material state parameters ( F —deformation gradient, F˙p—tangent of plastic deformation gradient, Lp—velocity gradients of plastic deformation gradient, S —second Piola-Kirchhoff stress, γ˙α—plastic slip rate, ρ˙eα—evolution rate of edge dislocation, fβ—martensite fraction)
Fig.3  Geometric model of the Mn chemical boundary in austenite
(a) schematic of the chemical boundary
(b) representative volume element model (The red part represents the Mn-rich region with Mn content of 13% (mass fraction) and the blue part represents the Mn-poor region with Mn content of 5% (mass fraction). ε—strain)
Fig.4  Simulated microzone strain distributions across the chemical boundary within an austenite grain at strains of 0.025 (a), 0.05 (b), 0.075 (c), and 0.10 (d)
Fig.5  Simulated microzone stress distributions across the chemical boundary within an austenite grain at strains of 0.025 (a), 0.05 (b), 0.075 (c), and 0.1 (d)
εεmax - εminτmax - τmin / MPa
0.0250.05 × 10-200.8
0.0500.05 × 10-204.4
0.0751.41 × 10-220.4
0.1002.78 × 10-271.1
Table 5  Statistics of the difference value of microzone strain and stress across the chemical boundary
Fig.6  Microzone stress (a, c) and microzone strain (b, d) distributions along the lines L1-L1' (a, b) and L2-L2' (c, d) in Figs.4b and 5b at strain of 0.025
Fig.7  Simulated dislocation density distributions across the chemical boundary at strain of 0.1 (a) and profile of the dislocation density along the black line in Fig.7a (b)
Fig.8  Distribution of the martensite volume fraction at strain of 0.05 (a) and kinetics of the martensite transformation within austenite grain on both side of the chemical boundary during deformation (b)
1 Yang L, Li X Y, Lu K. Making materials plain: Concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
doi: 10.11900/0412.1961.2017.00316
杨 乐, 李秀艳, 卢 柯. 材料素化: 概念、原理及应用 [J]. 金属学报, 2017, 53: 1413
2 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
3 Wu X L, Zhu Y T. Heterostructured metallic materials: Plastic deformation and strain hardening [J]. Acta Metall. Sin., 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化 [J]. 金属学报, 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
4 Wan X H, Liu G, Yang Z G, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure [J]. Scr. Mater., 2021, 198: 113819
5 Kim J H, Gu G, Koo M, et al. Enhanced ductility of as-quenched martensite by highly stable nano-sized austenite [J]. Scr. Mater., 2021, 201: 113955
6 Wang J W, Chen Y B, Zhu Q, et al. Grain boundary dominated plasticity in metallic materials [J]. Acta Metall. Sin., 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
王江伟, 陈映彬, 祝 祺 等. 金属材料的晶界塑性变形机制 [J]. 金属学报, 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
7 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
8 Wang Y, Li J, Rong X Q, et al. Application of fast heating of the 3rd generation advanced high strength steel [J]. Steel Rolling, 2022, 39(4): 18
王 岩, 李 俊, 荣雪荃 等. 快速加热技术在第3代先进高强钢中的应用 [J]. 轧钢, 2022, 39(4): 18
9 Wan X H, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium mn steels [J]. Scr. Mater., 2019, 166: 68
10 Roters F, Diehl M, Shanthraj P, et al. DAMASK—The Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale [J]. Comput. Mater. Sci., 2019, 158: 420
11 Ma A X, Hartmaier A. A study of deformation and phase transformation coupling for trip-assisted steels [J]. Int. J. Plast., 2015, 64: 40
12 Guo X R, Shen J J. Modelling of the plastic behavior of Cu crystal with twinning-induced softening and strengthening effects [J]. Acta Metall. Sin., 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟 [J]. 金属学报, 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
13 Sun C Y, Guo X R, Guo N, et al. Investigation of plastic deformation behavior on coupling twinning of polycrystal TWIP steel [J]. Acta Metall. Sin., 2015, 51: 1507
doi: 10.11900/0412.1961.2015.00156
孙朝阳, 郭祥如, 郭 宁 等. 耦合孪生的TWIP钢多晶体塑性变形行为研究 [J]. 金属学报, 2015, 51: 1507
doi: 10.11900/0412.1961.2015.00156
14 Connolly D S, Kohar C P, Muhammad W, et al. A coupled thermomechanical crystal plasticity model applied to quenched and partitioned steel [J]. Int. J. Plast., 2020, 133: 102757
15 Lee M G, Kim S J, Han H N. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite [J]. Int. J. Plast., 2010, 26: 688
16 Wong S L, Madivala M, Prahl U, et al. A crystal plasticity model for twinning- and transformation-induced plasticity [J]. Acta Mater., 2016, 118: 140
17 Feng R, Zhang M H, Chen N L, et al. Finite element simulation of the effect of stress relaxation on strain-induced martensitic transformation [J]. Acta Metall. Sin., 2014, 50: 498
doi: 10.3724/SP.J.1037.2013.00559
冯 瑞, 张美汉, 陈乃录 等. 应力松弛对应变诱发马氏体相变影响的有限元模拟 [J]. 金属学报, 2014, 50: 498
18 Roters F, Eisenlohr P, Kords C, et al. DAMASK: The Düsseldorf advanced material simulation kit for studying crystal plasticity using an Fe based or a spectral numerical solver [J]. Procedia IUTAM, 2012, 3: 3
19 Sinclair C W, Hoagland R G. A molecular dynamics study of the fcc→bcc transformation at fault intersections [J]. Acta Mater., 2008, 56: 4160
20 Orowan E. Zur kristallplastizität. I [J]. Z. Physik, 1934, 89: 605
21 Ma A, Roters F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Mater., 2004, 52: 3603
22 Roters F, Raabe D, Gottstein G. Work hardening in heterogeneous alloys—A microstructural approach based on three internal state variables [J]. Acta Mater., 2000, 48: 4181
23 Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Trans., 1975, 6A: 791
24 Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations [J]. J. Less Common Met., 1972, 28: 107
25 Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
26 Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
27 Talonen J, Hänninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels [J]. Acta Mater., 2007, 55: 6108
28 Gupta S, Ma A X, Hartmaier A. Mechanical twinning induced alteration in the kinetics of martensitic phase transformation in TRIP-maraging steels [J]. Int. J. Solids Struct., 2018, 155: 213
29 Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
30 Field D M, Qing J J, Van Aken D C. Chemistry and properties of medium-Mn two-stage TRIP steels [J]. Metall. Mater. Trans., 2018, 49A: 4615
31 Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels [J]. Metall. Mater. Trans., 2009, 40A: 3076
32 Diehl M, Wang D, Liu C L, et al. Solving material mechanics and multiphysics problems of metals with complex microstructures using DAMASK—The Düsseldorf advanced material simulation kit [J]. Adv. Eng. Mater., 2020, 22: 1901044
33 Shih M, Miao J S, Mills M, et al. Stacking fault energy in concentrated alloys [J]. Nat. Commun., 2021, 12: 3590
doi: 10.1038/s41467-021-23860-z pmid: 34117239
34 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
35 Kim J H, Gu G, Kwon M H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite [J]. Acta Mater., 2022, 223: 117506
36 Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning [J]. Scr. Mater., 2011, 65: 225
37 Yang H, Wang H M, Yang Z L, et al. In situ neutron diffraction and crystal plasticity analysis on Q&P1180 steel during plastic deformation [J]. Mater. Sci. Eng., 2021, 802A: 140425
38 Chen S H, Zhao M J, Li X Y, et al. Compression stability of reversed austenite in 9Ni steel [J]. J. Mater. Sci. Technol., 2012, 28: 558
[1] TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao, YANG Zhigang. Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels[J]. 金属学报, 2025, 61(1): 77-87.
[2] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[3] SU Shuai, HAN Peng, YANG Shanwu, WANG Hua, JIN Yaohui, SHANG Chengjia. Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel[J]. 金属学报, 2024, 60(6): 789-801.
[4] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[5] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[6] XIE Zedong, DING Cancan, WEN Pengyu, LUO Haiwen. Effect of Flash Heating on Microstructure and Mechanical Properties of 2000 MPa Hot Stamping Steel[J]. 金属学报, 2024, 60(12): 1667-1677.
[7] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[11] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[12] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[13] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[14] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[15] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
No Suggested Reading articles found!