|
|
|
| Corrosion Behavior of Zn-2.0Al-1.5Mg Coatings in Simulated Marine Atmosphere |
GU Tianzhen1,2,3, LIU Yuwei1,3( ), PENG Can1,2,3, ZHANG Peng4, WANG Zhenyao1,3( ), WANG Chuan1,3, MA Cheng4, CAO Hongwei4 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Liaoning Shenyang Soil and Atmosphere Corrosion of Materials National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4 HBIS Group Technology Research Institute, Shijiazhuang 050023, China |
|
Cite this article:
GU Tianzhen, LIU Yuwei, PENG Can, ZHANG Peng, WANG Zhenyao, WANG Chuan, MA Cheng, CAO Hongwei. Corrosion Behavior of Zn-2.0Al-1.5Mg Coatings in Simulated Marine Atmosphere. Acta Metall Sin, 2025, 61(2): 278-286.
|
|
|
Abstract As the service environment changes, the widely used galvanized coating faces challenges due to its overly thick coating and insufficient corrosion resistance. Zn-2.0Al-1.5Mg coatings have emerged as an alternative to conventional galvanizing because of their excellent corrosion resistance and are extensively used in buildings, home appliances, and automobiles in harsh environments. The marine environment, known for its high corrosiveness, faces considerable material corrosion problems. Highly resistant materials, such as Zn-2.0Al-1.5Mg coating, stainless steel, have found applications in the marine environment. However, the development period of Zn-2.0Al-1.5Mg coating is short, and further research is required to determine its suitability for highly corrosive marine atmospheric environments. Consequently, the laboratory dry-wet alternating cycle corrosion test method, corrosion mass loss, SEM, XRD, EIS, and potentiodynamic polarization were used to investigate the corrosion behavior (e.g., corrosion kinetics, corrosion product evolution, corrosion morphology, and electrochemical behavior) of Zn-2.0Al-1.5Mg coatings in a simulated marine atmosphere. Results show that the initial corrosion product is ZnO at 168 h, with Zn5(OH)8Cl2·H2O appearing after 168 h of corrosion cycles (336, 504, 672, 840, and 1848 h). The emergence of ZnO at 168 h is attributed to the shortened dry-wet alternating cycle time, while that of Zn(OH)2·0.5H2O at 1848 h is attributed to the depletion of Mg or Al elements. The corrosion rate of Zn-2.0Al-1.5Mg coatings in the simulated marine atmosphere exhibited an M-shaped curve over time, closely related to the evolution of corrosion products. Between 0 and 840 h, the corrosion rate increased, except for a decrease between 336 and 504 h; this trend may be attributed to the disappearance of ZnO and an increase in the amount of Zn5(OH)8Cl2·H2O. Combined with the electrochemical results, it is speculated that the corrosion will accelerate with further exposure after 1848 h.
|
|
Received: 01 December 2022
|
|
|
| Fund: Hebei Natural Science Foundation(E2021318006) |
Corresponding Authors:
LIU Yuwei, associate professor, Tel: (024)23893544, E-mail: ywliu12s@imr.ac.cn; WANG Zhenyao, professor, Tel: (024)23893544, E-mail: zhywang@imr.ac.cn
|
| 1 |
Gong J J, Li W T, Zhou Y. Development of hot dip galvanized aluminum and magnesium coated plate and application status of Hegang and Tangshan Steel [J]. Hebei Metall., 2020, 12: 9
|
|
弓俊杰, 李文田, 周 研. 热镀锌铝镁镀层板发展及河钢唐钢应用现状 [J]. 河北冶金, 2020, 12: 9
|
| 2 |
Prosek T, Nazarov A, Goodwin F, et al. Improving corrosion stability of Zn-Al-Mg by alloying for protection of car bodies [J]. Surf. Coat. Technol., 2016, 306: 439
|
| 3 |
Prosek T, Nazarov A, Le Gac A, et al. Coil-coated Zn-Mg and Zn-Al-Mg: Effect of climatic parameters on the corrosion at cut edges [J]. Prog. Org. Coat., 2015, 83: 26
|
| 4 |
LeBozec N, Thierry D, Peltola A, et al. Corrosion performance of Zn-Mg-Al coated steel in accelerated corrosion tests used in the automotive industry and field exposures [J]. Mater. Corros., 2013, 64: 969
|
| 5 |
Ahmadi M, Salgın B, Kooi B J, et al. Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatings [J]. Mater. Des., 2020, 186: 108364
|
| 6 |
Van Schaik M, Dane C, Berkhout B. MagiZinc—The new high performance coating for steel in the BIW and closures [A]. SAE 2016 World Congress and Exhibition [C]. New York: SAE, 2016: 0537
|
| 7 |
Schürz S, Luckeneder G H, Fleischanderl M, et al. Chemistry of corrosion products on Zn-Al-Mg alloy coated steel [J]. Corros. Sci., 2010, 52: 3271
|
| 8 |
Prosek T, Larché N, Vlot M, et al. Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications [J]. Mater. Corros., 2010, 61: 412
|
| 9 |
Thierry D, LeBozec N, Le Gac A, et al. Long-term atmospheric corrosion rates of hot dip galvanised steel and zinc-aluminium-magnesium coated steel [J]. Mater. Corros., 2019, 70: 2220
|
| 10 |
Keppert T A, Luckeneder G, Stellnberger K H, et al. The effect of sulphate, phosphate, nitrate and acetate on the corrosion behaviour of Zn-Al-Mg hot-dip galvanised steel [J]. Mater. Corros., 2014, 65: 560
|
| 11 |
Bobzin K, Oete M, Linke T F, et al. Corrosion of wire arc sprayed ZnMgAl [J]. Mater. Corros., 2015, 66: 520
|
| 12 |
Dutta M, Halder A K, Singh S B. Morphology and properties of hot dip Zn-Mg and Zn-Mg-Al alloy coatings on steel sheet [J]. Surf. Coat. Technol., 2010, 205: 2578
|
| 13 |
Yao C Z, Tay S L, Zhu T P, et al. Effects of Mg content on microstructure and electrochemical properties of Zn-Al-Mg alloys [J]. J. Alloys Compd., 2015, 645: 131
|
| 14 |
Schuerz S, Fleischanderl M, Luckeneder G H, et al. Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment [J]. Corros. Sci., 2009, 51: 2355
|
| 15 |
Liu Y, Ooi A, Tada E, et al. Electrochemical monitoring of the degradation of galvanized steel in simulated marine atmosphere [J]. Corros. Sci., 2019, 147: 273
doi: 10.1016/j.corsci.2018.11.013
|
| 16 |
Zhang X, Leygraf C, Wallinder I O. Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments [J]. Corros. Sci., 2013, 73: 62
|
| 17 |
Wallinder I O, Leygraf C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73: 1060
|
| 18 |
Xie Y X, Jin X Y, Wang L. Development and application of hot-dip galvanized zinc-aluminum-magnesium coating [J]. J. Iron Steel Res., 2017, 29: 167
|
|
谢英秀, 金鑫焱, 王 利. 热浸镀锌铝镁镀层开发及应用进展 [J]. 钢铁研究学报, 2017, 29: 167
doi: 10.13228/j.boyuan.issn10010963.20160359
|
| 19 |
Sullivan J, Cooze N, Gallagher C, et al. In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy [J]. Faraday Discuss., 2015, 180: 361
doi: 10.1039/c4fd00251b
pmid: 25912828
|
| 20 |
Sullivan J, Mehraban S, Elvins J. In situ monitoring of the microstructural corrosion mechanisms of zinc-magnesium-aluminium alloys using time lapse microscopy [J]. Corros. Sci., 2011, 53: 2208
|
| 21 |
Li F, Lv J S, Yang H G, et al. The corrosion behavior for Zn-Al-Mg coating in NaCl system [J]. China Surf. Eng., 2011, 24(4): 25
|
|
李 锋, 吕家舜, 杨洪刚 等. 锌铝镁镀层在NaCl体系中的腐蚀行为 [J]. 中国表面工程, 2011, 24(4): 25
|
| 22 |
Oh M S, Kim S H, Kim J S, et al. Surface and cut-edge corrosion behavior of Zn-Mg-Al Alloy-coated steel sheets as a function of the alloy coating microstructure [J]. Met. Mater. Int., 2016, 22: 26
|
| 23 |
Zhou H, Zhao A M, Xiao J, et al. Advances in continuous hot dip galvanizing of advanced high strength steels [A]. The Chinese Society for Metals. The 13th China Steel Annual Conference 5. Surface and Coating [C]. Beijing: Metallurgical Industry Press, 2022: 119
|
|
周 欢, 赵爱民, 肖 俊 等. 先进高强钢连续热浸镀锌铝镁技术的研究进展 [A]. 中国金属学会. 第十三届中国钢铁年会论文集—— 5. 表面与涂渡 [C]. 北京: 冶金工业出版社, 2022: 119
|
| 24 |
Persson D, Prosek T, LeBozec N, et al. Initial SO2-induced atmospheric corrosion of ZnAlMg coated steel studied with in situ Infrared Reflection Absorption Spectroscopy [J]. Corros. Sci., 2015, 90: 276
|
| 25 |
Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
|
| 26 |
Salgueiro Azevedo M, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg,Al) coated steel: The effect of HCO 3 - and NH 4 + ions on the intrinsic reactivity of the coating [J]. Electrochim. Acta, 2015, 153: 159
|
| 27 |
Thierry D, Persson D, Luckeneder G, et al. Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites [J]. Corros. Sci., 2019, 148: 338
|
| 28 |
Salgueiro Azevedo M, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes [J]. Corros. Sci., 2015, 90: 482
|
| 29 |
Volovitch P, Vu T N, Allély C, et al. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel [J]. Corros. Sci., 2011, 53: 2437
|
| 30 |
Salgueiro Azevedo M, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate [J]. Corros. Sci., 2015, 90: 472
|
| 31 |
Diler E, Rouvellou B, Rioual S, et al. Characterization of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere [J]. Corros. Sci., 2014, 87: 111
|
| 32 |
Li F, Lv J S, Yang H G, et al. Research on ZnAlMg coated steel sheet [J]. Steel Rolling, 2013, 30(2): 45
|
|
李 锋, 吕家舜, 杨洪刚 等. 锌铝镁镀层钢板的研究进展 [J]. 轧钢, 2013, 30(2): 45
|
| 33 |
Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha Marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
doi: 10.11900/0412.1961.2020.00013
|
|
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
doi: 10.11900/0412.1961.2020.00013
|
| 34 |
Liu Y W, Gu T Z, Wang Z Y, et al. Corrosion behavior of Q235 and Q450NQR1 exposed to marine atmospheric environment in Nansha, China for 34 months [J]. Acta Metall. Sin., 2022, 58: 1623
doi: 10.11900/0412.1961.2021.00576
|
|
刘雨薇, 顾天真, 王振尧 等. Q235和Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为 [J]. 金属学报, 2022, 58: 1623
doi: 10.11900/0412.1961.2021.00576
|
| 35 |
Hosking N C, Ström M A, Shipway P H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49: 3669
|
| 36 |
Bernard M C, Goff A H L, Phillips N. In situ Raman study of the corrosion of zinc-coated steel in the presence of chloride: I. Characterization and stability of zinc corrosion products [J]. J. Electrochem. Soc., 1995, 142: 2162
|
| 37 |
Graedel T E. Corrosion mechanisms for zinc exposed to the atmosphere [J]. J. Electrochem. Soc., 1989, 136: 193C
|
| 38 |
Chen Z Y, Cui F, Kelly R G. Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments [J]. J. Electrochem. Soc., 2008, 155: C360
|
| 39 |
Gu T Z, Zhang P, Guo M X, et al. Corrosion behavior of zinc-aluminum-magnesium coated steel in simulated marine atmosphere [J]. Int. J. Electrochem. Sci., 2022, 17: 22054
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|