Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 331-340    DOI: 10.11900/0412.1961.2015.00362
Orginal Article Current Issue | Archive | Adv Search |
STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE
Hongchi MA1,Cuiwei DU1,Zhiyong LIU1(),Wenkui HAO1,Xiaogang LI1,2,Chao LIU1
1 Key Laboratory for Corrosion and Protection, Ministry of Education, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE. Acta Metall Sin, 2016, 52(3): 331-340.

Download:  HTML  PDF(17201KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of industry, the atmosphere in many cities along the coastal lines such as Qingdao in China has been polluted with SO2, and has been changed to coastal-industrial atmosphere with the co-existence of SO2 and Cl-. The corrosion and stress corrosion cracking (SCC) behavior and mechanism of steel in this environment is different from that in the coastal atmosphere containing only Cl- or the industrial atmosphere containing only SO2. Previous study have indicated that SO2 in the marine atmosphere can greatly promote the stress corrosion cracking of high-strength steel due to acidification of thin electrolyte layer and reproduction of H+ through FeSO4. E690 steel, as a newly-developed high strength steel, is very promising to be widely used in offshore platform in the near future for its excellent performance. However, there is few research about its SCC behavior in marine atmosphere, especially in SO2-polluted atmosphere. Therefore, it's of great importance to investigate the SCC behavior and mechanism of E690 steel in this environment. In this work, U-bend specimen corrosion test under dry/wet cyclic condition, electrochemical measurements, crack morphology observation and rust layer analysis, were conducted to investigate the effect of SO2 on SCC behavior of E690 steel in simulated SO2-polluted marine atmosphere. The results indicated that E690 steel has a high SCC susceptibility in SO2-polluted marine atmosphere with a combined mechanism of anodic dissolution (AD) and hydrogen embrittlement (HE). SO2 in the atmosphere can facilitate the densification of inner rust layer by promoting the formation of α-FeOOH and enrichment of Ni and Cr in the inner rust layer, leading to the concentration of Cl- under the rust layer, which may result in the initiation and propagation of SCC cracks significantly and therefore enhance the SCC susceptibility.

Key words:  E690 high-strength steel      SO2-polluted marine atmosphere      stress corrosion cracking      thin electrolyte layer      dry/wet cyclic corrosion     
Received:  09 July 2015     
Fund: Supported by National Basic Research Program of China (No.2014CB643300), National Natural Science Foundation of China (Nos.51471034, 51131005 and 51171025), National Environmental Corrosion Platform (NECP) and Beijing Higher Education Young Elite Teacher Project

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00362     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/331

Fig.1  OM (a) and SEM (b) images of E690 steel
Fig.2  Macro-morphology of U-bend specimen
Fig.3  Schematic of cutting for cross-section of U-bend specimen
Fig.4  Nyquist plots of EIS of E690 steel after different periods of cyclic corrosion test (CCT)
Fig.5  Potentiodynamic polarization curves of E690 steel after different periods of CCT (E--potential, i--current density)
Fig.6  Dependence of corrosion potential (Ecorr) and corrosion current density (icorr) on CCT time
Fig.7  Macro-morphologies of U-bend specimen after CCT periods of 5 d (a), 10 d (b), 20 d (c), 30 d (d), 40 d (e), 60 d (f) and 90 d (g)
Fig.8  Morphologies of corrosion product of U-bend specimen after CCT periods of 5 d (a), 10 d (b), 20 d (c), 30 d (d), 40 d (e), 60 d (f) and 90 d (g)
Fig.9  Micro-morphologies of U-bend specimen surface after CCT periods of 5 d (a), 10 d (b), 20 d (c), 30 d (d), 40 d (e), 60 d (f) and 90 d (g) (Insets show the high magnified images)
Fig 10  Cracking morphologies of E690 steel in thin electrolyte layer containing SO2 for 30 d (a), 40 d (b), 60 d (c) and 90 d (d)
Fig 11  Dependence of Crack depth on CCT time in thin electrolyte layer with and without SO2[18]
Fig 12  EDS analysis of corrosion product of E690 steel after 90 d of CCT
Fig 13  XRD spectra of corrosion product of E690 steel after ifferent periods of CCT
Fig 14  EDS map distributions of alloying elements in the cross section of rust layer for 10 d (a) and 90 d (b)
[1] Han E-H, Chen J M, Su Y J, Liu M.Mater China, 2014; 33(2): 65
[1] (韩恩厚, 陈建敏, 宿彦京, 刘敏. 中国材料进展, 2014; 33(2): 65)
[2] Nishikata A, Ichihara Y, Hayashi Y, Tsuru T.J Electrochem Soc, 1997; 144: 1244
[3] Zhong X K, Zhang G A, Qiu Y B, Chen Z Y, Guo X P, Fu C Y. Corros Sci, 2013; 66: 14
[4] Qiao L J, Luo J L, Mao X.Corrosion, 1998; 54: 115
[5] Dmytrakh I M, Smiyan O D, Syrotyuk A M, Bilyy O L.Int J Fatigue, 2013; 50: 26
[6] Gu B, Luo J, Mao X.Corrosion, 1999; 55: 96
[7] Li M C, Cheng Y F.Electrochim Acta, 2007; 52: 8111
[8] Chen W J, Hao L, Dong J H, Ke W, Wen H L.Acta Metall Sin, 2014; 50: 802
[8] (陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 金属学报, 2014; 50: 802)
[9] Wang C, Wang Z Y, Ke W.Acta Metall Sin, 2008; 44: 729
[9] (汪川, 王振尧, 柯伟. 金属学报, 2008; 44: 729)
[10] Chen W J, Hao L, Dong J H, Ke W.Corros Sci, 2014; 83: 155
[11] Wang J H, Wei F I, Chang Y S, Shih H C.Mater Chem Phys, 1997; 47: 1
[12] Nishimura R, Shiraishi D, Maeda Y.Corros Sci, 2004; 46: 225
[13] Zheng C B, Huang Y L, Wang X, Sun G J, Pan L Z.Mater Prot, 2011; 44(5): 34
[13] (郑传波, 黄彦良, 王旭, 孙广杰, 潘立志. 材料保护, 2011; 44(5): 34)
[14] Zheng C B.PhD Dissertation, Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 2008
[14] (郑传波. 中国科学院海洋研究所博士学位论文, 青岛, 2008)
[15] Xiong X Q, Xiong W M, Chen Y J, Sun X Z.Jiangxi Metall, 2012; 32(6): 21
[15] (熊小强, 熊文名, 陈英俊, 孙熙钟. 江西冶金, 2012; 32(6): 21)
[16] Zhang J, Cai Q W, Wu H B, Fan X H, Zhang M J.J Univ Sci Technol Beijing, 2012; 34: 657
[16] 张杰, 蔡庆伍, 武会宾, 樊学华, 张明洁. 北京科技大学学报, 2012; 34: 657)
[17] Wu B, Cai Q W, Zhang J, Wu H B.Heat Treat Met, 2011; 36(3): 26
[17] (武博, 蔡庆伍, 张杰, 武会宾. 金属热处理, 2011; 36(3): 26)
[18] Hao W K.PhD Dissertation, University of Science and Technology Beijing, 2015
[18] (郝文魁. 北京科技大学博士学位论文, 2015)
[19] Ma Y T, Li Y, Wang H F.Corros Sci, 2009; 51: 997
[20] Hao L, Zhang S X, Dong J H, Ke W.Corros Sci, 2012; 58: 175
[21] Collazo A, Novoa X R, Pérez C, Puga B.Electrochim Acta, 2008; 53: 7565
[22] Zhang Q C, Wu J S, Wang J J, Zheng W L, Chen J G, Li A B.Mater Chem Phys, 2003; 77: 603
[23] Castaño J G, Botero C A, Restrepo A H, Agudelo E A, Correa E, Echeverría F.Corros Sci, 2010; 52: 216
[24] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 59: 270
[25] Akiyama E, Li S, Shinohara T, Zhang Z, Tsuzaki K.Electrochim Acta, 2011; 56: 1799
[26] Akiyama E, Matsukado K, Wang M, Tsuzaki K.Corros Sci, 2010; 52: 2758
[27] Tsuru T, Huang Y L, Ali M R, Nishikata A.Corros Sci, 2005; 47: 2431
[28] Antony H, Perrin S, Dillmann P, Legrand L, Chaussé A.Electrochim Acta, 2007; 52: 7754
[29] Zhou Y L, Chen J, Liu Z Y.J Iron Steel Res, 2013; 20: 66
[30] Tamura H.Corros Sci, 2008; 50: 1872
[31] Kamimura T, Hara S, Miyuki H, Yamashita M, Uchida H.Corros Sci, 2006; 48: 2799
[32] Dillmann P, Mazaudier F, Hoerle S.Corros Sci, 2004; 46: 1401
[33] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T.Corros Sci, 1994; 36: 283
[34] Singh D D, Yadav S, Saha J K.Corros Sci, 2008; 50: 93
[35] Allam I M, Arlow J S, Saricimen H.Corros Sci, 1991; 32: 417
[1] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[3] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[4] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[6] Hongliang MING,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN,Mingxing SU. Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. 金属学报, 2017, 53(1): 57-69.
[7] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[8] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[9] Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. 金属学报, 2016, 52(3): 313-319.
[10] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[11] Yueling GUO, En-Hou HAN, Jianqiu WANG. EFFECTS OF FORGING AND HEAT TREATMENTS ON STRESS CORROSION BEHAVIOR OF 316LN STAINLESS STEEL IN HIGH TEMPERATURE CAUSTIC SOLUTION[J]. 金属学报, 2015, 51(6): 659-667.
[12] YAN Maocheng, WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei. CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING[J]. 金属学报, 2014, 50(9): 1137-1145.
[13] HAO Wenkui,LIU Zhiyong,LI Xiaogang,DU Cuiwei. STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS[J]. 金属学报, 2013, 49(7): 881-889.
[14] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
[15] ZHU Min, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LI Jiankuan, LI Qiong, JIA Jinghuan. STRESS CORROSION CRACKING BEHAVIOR AND MECHANISM OF X65 AND X80 PIPELINE STEELS IN HIGH pH SOLUTION[J]. 金属学报, 2013, 49(12): 1590-1596.
No Suggested Reading articles found!