Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 802-810    DOI: 10.3724/SP.J.1037.2013.00738
Current Issue | Archive | Adv Search |
EFFECT OF SO2 ON CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL- INDUSTRIAL ATMOSPHERE
CHEN Wenjuan, HAO Long, DONG Junhua(), KE Wei, WEN Huailiang
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF SO2 ON CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL- INDUSTRIAL ATMOSPHERE. Acta Metall Sin, 2014, 50(7): 802-810.

Download:  HTML  PDF(1251KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

采用循环干/湿模拟腐蚀增重实验、动电位极化曲线、电化学阻抗谱和XRD方法, 研究了模拟海岸-工业大气中SO2对Q235B钢腐蚀行为的影响. 结果表明, 在腐蚀初期SO2抑制了Q235B钢的腐蚀; 在腐蚀后期, SO2促进了Q235B钢的腐蚀. 当SO2的浓度较低时, 腐蚀速率随SO2浓度的升高而增大; 当SO2的浓度较高时, 腐蚀速率随SO2浓度的升高而减小. 工业-海岸大气中的SO2组分可以抑制腐蚀产物中g -FeOOH和b -FeOOH的生成, 而促进a -FeOOH生成. 低碳钢腐蚀速率随SO2浓度变化出现的极值现象与SO2导致的锈层相组分变化密切相关.

Key words:  Q235B steel      dry/wet cyclic      coastal-industrial atmospheric corrosion      rust     
Received:  15 November 2013     
ZTFLH:  TG172.3  
Fund: Supported by National Natural Science Foundation of China (Nos.51201170 and 51131007)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00738     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/802

Fig.1  

Q235B钢在模拟海岸大气和模拟工业-海岸大气中的腐蚀增重曲线

Fig.2  

Q235B钢在模拟海岸大气和模拟工业-海岸大气中平均腐蚀速率-腐蚀周期(Va-N)的双对数曲线

Concentration / (mol·L-1) 1st stage 2nd stage 3rd stage 4th stage
0 1.220 0.820 - -
0.0010 1.183 0.942 - -
0.0017 1.200 0.978 - -
0.0050 1.067 0.869 - -
0.0300 1.165 0.798 - -
0.0900 0.885 1.578 1.017 0.858
表1  Q235B钢在模拟海岸大气和模拟工业-海岸大气中的幂指数n
Fig.3  

Q235B钢在模拟海岸大气和工业-海岸大气中瞬时腐蚀速率-腐蚀周期(Vf-N)的双对数曲线

Fig.4  

Q235B钢在模拟海岸大气和模拟工业-海岸大气中10和120 CCT后腐蚀产物的XRD谱

Fig.5  

Q235B钢在模拟海岸大气和模拟工业-海岸大气中经过不同腐蚀周期的阻抗谱

Fig.6  

Q235B钢在模拟海岸大气和模拟工业-海岸大气中经过不同腐蚀周期的阻抗谱

Fig.7  

拟合Q235B钢带锈电极电化学阻抗谱的等效电路

Fig.8  

Q235B钢的电化学阻抗谱拟合结果

[1] Leygraf C, Graedel T. Atmospheric Corrosion. New York: John Wiley & Sons, 2000: 10
[2] Singh D D N, Yadav S, Saha J K. Corros Sci, 2008; 50: 93
[3] Castaño J G, Botero C A, Restrepo A H, Agudelo E A, Correa E, Echeverría F. Corros Sci, 2010; 52: 216
[4] Hou W, Liang C. Corrosion, 1999; 55: 65
[5] Zhang Q C, Wu J S, Wang J J, Zheng W L, Li A B. Mater Chem Phys, 2002; 77: 603
[6] Mendoza A R, Corvo F. Corros Sci, 1999; 41: 75
[7] Dawson J L, Ferreira M G S. Corros Sci, 1986; 26: 1009
[8] Weissenrieder J, Leygraf C. J Electrochem Soc, 2004; 151: B165
[9] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 58: 175
[10] Dong J H. Corros Sci Prot Technol, 2010; 22: 261
(董俊华. 腐蚀科学与防护技术, 2010; 22: 261)
[11] Hao L, Zhang S X, Dong J H, Ke W. Metall Mater Trans, 2012; 43: 1724
[12] Wang J H, Wei F I, Chang Y S, Shih H C. Mater Chem Phys, 1997; 47: 1
[13] Misawa T, Hashimoto K, Shimodaira S. Corros Sci, 1974; 14: 131
[14] Evans U R, Taylor C A J. Corros Sci, 1972; 12: 227
[15] Saha J K. Corrosion of Constructional Steels in Marine and Industrial Environment. Heidelberg: Springer, 2013: 13
[16] Fuente D D L, Díaz I, Simancas J, Chico B, Morcillo M. Corros Sci, 2011; 53: 604
[17] Chen Y Y, Tzeng H J, Wei L I, Shih H C. Mater Sci Eng, 2005; A398: 47
[18] Ishikawa T, Katoh R, Yasukawa A, Kandori K, Nakayama T, Yuse F. Corros Sci, 2001; 43: 1727
[19] Asami K, Kikuchi M. Corros Sci, 2003; 45: 2671
[20] Shiotani K, Tanimoto W, Maeda C, Kawabata F, Amano K. Corros Eng, 2000; 49: 67
[21] Allam I M, Arlow J S, Saricimen H. Corros Sci, 1991; 32: 417
[22] Dong J H, Han E H, Ke W. Sci Technol Adv Mater, 2007; 8: 559
[23] Melchers R E. Corros Sci, 2008; 50: 3446
[24] Stramann M, Bohnenkamp K, Engell H J. Corros Sci, 1983; 23: 969
[25] Vaynman S, Guico R S, Fine M E, Manganello S J. Metall Mater Trans, 1997; 28A: 1274
[26] Mansfeld F. Corrosion, 1988; 44: 856
[27] Mansfeld F, Lin S, Chen Y C. J Electrochem Soc, 1988; 135: 906
[28] Stern M, Geary A L. J Electrochem Soc, 1957; 104: 56
[29] Revie R W, Uhlig H H. Corrosion and Corrosion Control. 4th Ed., New York: John Wiley & Sons, 2008: 115
[30] Stratmann M, Streckel H, Kim K T, Crockett S. Corros Sci, 1990; 30: 715
[31] Zhang S H, Lyon S B. Corros Sci, 1993; 35: 713
[32] Frankel G S, Stratmann M, Rohwerder M, Michalik A, Maier B, Dora J, Wicinski M. Corros Sci, 2007; 49: 2021
[1] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[2] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[3] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[4] Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE[J]. 金属学报, 2016, 52(3): 331-340.
[5] Yunfei LU,Junhua DONG,Wei KE. EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS[J]. 金属学报, 2015, 51(9): 1067-1076.
[6] LU Yunfei, YANG Jingfeng, DONG Junhua, KE Wei. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS[J]. 金属学报, 2015, 51(4): 440-448.
[7] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES[J]. 金属学报, 2015, 51(2): 191-200.
[8] PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER[J]. 金属学报, 2012, 48(10): 1260-1266.
[9] LIU Jie LI Xiangbo WANG Jia. EFFECT OF HYDROSTATIC PRESSURE ON THE CORROSION BEHAVIORS OF TWO LOW ALLOY STEELS[J]. 金属学报, 2011, 47(6): 697-705.
[10] GAO Xinliang ZHU Miaoyong FU Guiqin WANG Feng DENG Zhiyin. CORROSION BEHAVIOR OF BRIDGE WEATHERING STEELS IN ENVIRONMENT CONTAINING Cl-[J]. 金属学报, 2011, 47(5): 520-527.
[11] CAO Guoliang LI Guoming CHEN Shan CHANG Wanshun CHEN Xuequn. STUDY ON RUST LAYERS AND PITTING CORROSION RESISTANCE OF Ni-Cu-P STEEL EXPOSED IN MARINE SPLASH ZONE[J]. 金属学报, 2011, 47(2): 145-151.
[12] CAO Guoliang LI Guoming CHEN Shan CHANG Wanshun CHEN Xuequn. COMPARISON ON PITTING CORROSION RESISTANCE OF NICKEL AND CHROMIUM IN TYPICAL SEA WATER RESISTANCE STEELS[J]. 金属学报, 2010, 46(6): 748-754.
[13] KE Wei DONG Junhua. STUDY ON THE RUSTING EVOLUTION AND THE PERFORMANCE OF RESISTING TO ATMOSPHERIC CORROSION FOR Mn-Cu STEEL[J]. 金属学报, 2010, 46(11): 1365-1378.
[14] ZOU Yan ZHENG Yingying WANG Yanhua WANG Jia. CATHODIC ELECTROCHEMICAL BEHAVIORS OF MILD STEEL IN SEAWATER[J]. 金属学报, 2010, 46(1): 123-128.
[15] CUI Lei YANG Shanwu WANG Shutao GAO Kewei HE Xinlai. EFFECT OF DAMNIFICATION IN RUST LAYER ON CORROSION BEHAVIORS OF LOWCARBON BAINITIC STEEL IN THE ENVIRONMENT CONTAINING Cl[J]. 金属学报, 2009, 45(4): 442-449.
No Suggested Reading articles found!