Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (11): 1758-1768    DOI: 10.11900/0412.1961.2024.00083
Research paper Current Issue | Archive | Adv Search |
Multi-Scale Simulation of Mechanical Properties of 6XXX Aluminum Alloy Based on Crystal Plasticity
ZHENG Xiaoyu, CHEN Xin, HE Meiling, HUANG Qi, LI Ya, KONG Yi, DU Yong()
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Cite this article: 

ZHENG Xiaoyu, CHEN Xin, HE Meiling, HUANG Qi, LI Ya, KONG Yi, DU Yong. Multi-Scale Simulation of Mechanical Properties of 6XXX Aluminum Alloy Based on Crystal Plasticity. Acta Metall Sin, 2025, 61(11): 1758-1768.

Download:  HTML  PDF(2077KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

6XXX age-strengthened aluminum alloys are extensively utilized across various fields, including construction, engineering machinery, and transportation, owing to their low density, good electrical conductivity and heat resistance, and excellent overall mechanical properties. Despite such widespread applications, there are no systematic computational frameworks for these alloys that are applicable across diverse processes, including microstructure simulations and performance predictions. Notably, to facilitate the material design and industrial production of 6XXX aged-strengthened aluminum alloys, the following steps are essential: analyzing the precipitation kinetics governing the mechanical properties of 6XXX aged-strengthened aluminum alloys, developing precipitation kinetics models, establishing corresponding strengthening models correlating microstructural features with key mechanical performance metrics, and performing mechanical simulations under standard service conditions to obtain stress-strain response characteristics. Accordingly, this study introduces a full-sequence computational model for 6XXX age-strengthened alloys based on the crystal plasticity theory. The proposed model is applicable to the investigation of several characteristics, including microstructure evolution, mechanical responses, and plastic deformations. Employing “structure-property” relationships as the entry points, the mechanical behaviors of 6XXX age-strengthened aluminum alloys are described through geometrical modeling and intrinsic relationship derivations. During this process, major factors influencing mechanical properties, including grain size and morphology, precipitation data and solid solution phases, and the characteristics of non-precipitation zones at the grain boundaries, are considered. The primary task involves computationally simulating the evolution of the size distribution and volume fraction of precipitated phases as well as variations in solid solution phase contents by sizing precipitated phases according to the grain size using the Kampmann-Wagner Numerical (KWN) method. According to the dislocation-density-based strengthening of materials, an age-strengthening model and a work-hardening model are established based on the interaction mechanism between precipitated phases and dislocations. The model tracks the evolution of yield strength and work-hardening properties with aging time. A method for computing the strength contribution from the precipitation-free zone at the grain boundary and a geometrical modeling strategy are proposed. The hardening model for 6XXX is selected based on the crystal plasticity finite element method, while uniaxial tensile plastic deformation is simulated to obtain stress-strain curves. The proposed multiscale analysis model of 6XXX age-strengthened aluminum alloys constructed based on the relationships among the alloy composition, aging process, microstructures, and mechanical properties of metallic materials provides a systematic framework for designing high-performance 6XXX age-strengthened alloys. It also highlights the key role played by computational mechanics in the development of new high-strength and high-toughness aluminum alloys, offering valuable insights. Furthermore, the analytical workflow of the study is extended to the crystal properties calculation package, which is universally applicable to studies on diverse age-strengthened materials, introducing its features and functions.

Key words:  6XXX aluminum alloy      crystal plastic finite element      plastic deformation      multi-scale computation     
Received:  14 March 2024     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52031017);National Natural Science Foundation of China(52331002)
Corresponding Authors:  DU Yong, professor, Tel: 13974962527, E-mail: yong-du@csu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00083     OR     https://www.ams.org.cn/EN/Y2025/V61/I11/1758

Fig.1  Schematic of multi-scale simulation of microstructure and mechanical properties of 6XXX age-strengthened aluminum alloy (t1, t2, t3—time; C11, C12, C44—elastic constants; σy—yield strength; σi—intrinsic strength of pure Al; σgb—grain boundary strength; σss—solution strength; σppt—precipitation strength; σpfz—strength contribution of grain boundary precipitation-free zone (PFZ))
ParameterValueUnitSource
Cs290.0mass fraction / %[25]
Qs41.0kJ·mol-1[25]
Qd130.0kJ·mol-1[14]
γ0.35J·m-2[26]
Cp63.4mass fraction / %[14]
D02.2 × 10-4m2·s-1[14]
Vm3.95 × 10-5m3·mol-1[14]
Table 1  Parameters of simulated materials for precipitation of 6XXX aluminum alloy during aging[14,25,26]
ParameterValueUnitSource
kMg29.0MPa·%-2/3 (mass fraction)[15]
kSi66.3MPa·%-2/3 (mass fraction)[15]
kCu46.4MPa·%-2/3 (mass fraction)[15]
A9.171 × 10-6MPa[31]
B-3.184[31]
C-95.81MPa[31]
σAl50.0MPa[31]
rO5.0nm[33]
b0.284nm[34]
μ27.0GPa[34]
k14.0 × 108m-1[32]
k2200.0MPa·%-3/4 (mass fraction)[32]
Table 2  Material parameters of age-strengthening and work-hardening models for 6XXX aluminum alloy[15,31-34]
Fig.2  Flow overview for crystal property calculation package
Fig.3  Uniaxial tensile boundary conditions (set 8% tensile strain) of 3D geometric models (a) and geometric illustration of boundary conditions (uADHEX—displacement of surface ADHE in the X direction, uABCDY—displacement of surface ABCD in the Y direction, uDCGHZ—displacement of surface DCGH in the Z direction, uBCGFX—displacement of surface BCGF in the X direction, UX —displacement amount set along the X direction) (b)
Fig.4  Geometric modeling diagrams of grain boundary precipitation-free zone in 2D polycrystalline geometric model (a) and 3D polycrystalline geometry model (b)
ParameterValueUnitSource
C11106430MPa[40]
C1260350MPa[40]
C4428210MPa[40]
q1.4[41]
h060MPa[41]
γ˙00.001s-1[41]
n50[41]
M3.1[42]
τy62.67MPaEq.(33)
τs80.08MPaEq.(33)
Table 3  Material parameters of 6XXX aluminum alloy crystal plastic finite element simulation[40-42]

Item

Average length

nm

Average radius of circular section / nm

Number density

1022 m-3

Relative error18.5%21.07%12.5%
Calculated value26.562.211.05
Measured value32.602.801.20
Table 4  Simulation results and experimental values of aging precipitation of Al-0.42Mg-0.55Si-0.22Fe-0.04Ti alloy
Fig.5  Simulation results of aging precipitation of Al-0.42Mg-0.55Si-0.22Fe-0.04Ti alloy
(a) length distribution of precipitates (b) average length of precipitates
(c) volume fraction of precipitates (d) initial slip resistance
Fig.6  Crystal plastic finite element simulation results of uniaxial tension in Al-0.42Mg-0.55Si-0.22Fe-0.04Ti alloy
(a) stress-strain curve
(b) polycrystalline Mises stress distributions after plastic deformation
[1] Li Y, Zheng X Y, Liu Y L, et al. Design of ultrahigh strength Al-Zn-Mg-Cu alloys through a hybrid approach of high-throughput precipitation simulation and decisive experiment [J]. J. Mater. Sci. Technol., 2024, 195: 234
[2] Du J Q, Li G J, Guo M X, et al. Simultaneously improved bendability and strength of Al-Mg-Si-Cu-Zn alloys by controlling the formation and evolution of primary Fe‐rich phase [J]. Adv. Eng. Mater., 2023, 25: 2300376
[3] Feng X M, Wang Z L, Jiang L, et al. Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning [J]. J. Mater. Sci. Technol., 2023, 167: 1
[4] Zheng X Y, He M L, Huang Q, et al. Integrated microstructural simulations and mechanical property predictions for age-precipitated Al-Mg-Si alloys [J]. J. Mater. Sci., 2024, 59: 5436
[5] Li Y L, Kohar C P, Muhammad W, et al. Precipitation kinetics and crystal plasticity modeling of artificially aged AA6061 [J]. Int. J. Plast., 2022, 152: 103241
[6] Zheng X Y, Huang Q, Mao H, et al. A yield stress and work hardening model of Al-Mg-Si alloy considering the strengthening effect of β'' and β' precipitates [J]. Materials, 2023, 16: 7183
[7] Yang X K, Xiong B Q, Li X W, et al. Effect of Li content on ageing precipitation behavior of Al-Mg-Si alloy [J]. J. Mater. Eng., 2021, 49(6): 100
杨晓琨, 熊柏青, 李锡武 等. Li含量对Al-Mg-Si合金时效析出行为的影响 [J]. 材料工程, 2021, 49(6): 100
[8] Chen Z H, Xu J, Liu Q D, et al. Simulation and computation of isothermal precipitation kinetics and precipitation strengthening for AA6061 aluminum alloy [J]. J. Mech. Eng., 2021, 57(20): 126
陈震昊, 徐 骏, 刘庆冬 等. AA6061铝合金等温时效析出动力学及析出强化模拟计算 [J]. 机械工程学报, 2021, 57(20): 126
[9] Wang X N, Han L Z, Gu J F. Aging precipitation kinetics and strengthening models for aluminum alloys [J]. Chin. J. Nonferrous Met., 2013, 23: 2754
王小娜, 韩利战, 顾剑锋. 铝合金时效析出动力学及强化模型 [J]. 中国有色金属学报, 2013, 23: 2754
[10] Lei X W, Huang J H, Jin X, et al. Application of Johnson-Mehl-Avrami-Kolmogorov type equation in non-isothermal phase process: Re-discussion [J]. Mater. Lett., 2016, 181: 240
[11] Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
[12] Wagner C. Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung) [J]. Z. Elektrochem. Ber. Bunsenges. Phys. Chem., 1961, 65: 581
[13] Kampmann R, Eckerlebe H, Wagner R. Precipitation kinetics in metastable solid solutions-theoretical considerations and application to Cu-Ti alloys [J]. MRS Online Proc. Libr., 1985, 57: 525
[14] Myhr O R, Grong Ø. Modelling of non-isothermal transformations in alloys containing a particle distribution [J]. Acta Mater., 2000, 48: 1605
[15] Myhr O R, Grong Ø, Andersen S J. Modelling of the age hardening behaviour of Al-Mg-Si alloys [J]. Acta Mater., 2001, 49: 65
[16] Du Q, Poole W J, Wells M A. A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys [J]. Acta Mater., 2012, 60: 3830
[17] Bahrami A, Miroux A, Sietsma J. An age-hardening model for Al-Mg-Si alloys considering needle-shaped precipitates [J]. Metall. Mater. Trans., 2012, 43A: 4445
[18] Holmedal B, Osmundsen E, Du Q. Precipitation of non-spherical particles in aluminum alloys part I: Generalization of the Kampmann-Wagner Numerical model [J]. Metall. Mater. Trans., 2016, 47A: 581
[19] Khadyko M, Myhr O R, Hopperstad O S. Work hardening and plastic anisotropy of naturally and artificially aged aluminium alloy AA6063 [J]. Mech. Mater., 2019, 136: 103069
[20] Myhr O R, Børvik T, Marioara C D, et al. Nanoscale modelling of combined isotropic and kinematic hardening of 6000 series aluminium alloys [J]. Mech. Mater., 2020, 151: 103603
[21] Lu R Q, Zheng S W, Teng J, et al. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80: 150
[22] Kasemer M, Falkinger G, Roters F. A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet [J]. Modell. Simul. Mater. Sci. Eng., 2020, 28: 085005
[23] Bulut O, Acar S S, Yalçinkaya T. The influence of thickness/grain size ratio in microforming through crystal plasticity [J]. Procedia Struct. Integr., 2022, 35: 228
[24] Myhr O R, Marioara C D, Engler O. Modeling the effect of excess vacancies on precipitation and mechanical properties of Al-Mg-Si alloys [J]. Metall. Mater. Trans., 2024, 55A: 291
[25] Myhr O R, Grong Ø, Fjær H G, et al. Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing [J]. Acta Mater., 2004, 52: 4997
[26] Chen R, Xu Q Y, Guo H T, et al. Modeling the precipitation kinetics and tensile properties in Al-7Si-Mg cast aluminum alloys [J]. Mater. Sci. Eng., 2017, A685: 403
[27] Esmaeili S, Lloyd D J, Poole W J. A yield strength model for the Al-Mg-Si-Cu alloy AA6111 [J]. Acta Mater., 2003, 51: 2243
[28] Simar A, Bréchet Y, de Meester B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6 [J]. Acta Mater., 2007, 55: 6133
[29] Holmedal B. Strength contributions from precipitates [J]. Philos. Mag. Lett., 2015, 95: 594
[30] Liao B, Cao L F, Wu X D. Research progress on precipitation-free zone of aluminum alloy [J]. Heat Treat. Met., 2021, 46(1): 154
廖 斌, 曹玲飞, 吴晓东. 铝合金无沉淀析出带的研究进展 [J]. 金属热处理, 2021, 46(1): 154
[31] Yang M J, Ruan Z X, Lin H, et al. Quantified effect of quench rate on the microstructures and mechanical properties of an Al-Mg-Si alloy [J]. J. Mater. Res. Technol., 2023, 24: 6753
[32] Myhr O R, Grong Ø, Pedersen K O. A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys [J]. Metall. Mater. Trans., 2010, 41A: 2276
[33] Hornbogen E, Starke E A. Overview no. 102 Theory assisted design of high strength low alloy aluminum [J]. Acta Metall. Mater., 1993, 41: 1
[34] Myhr O R, Grong Ø, Schäfer C. An extended age-hardening model for Al-Mg-Si alloys incorporating the room-temperature storage and cold deformation process stages [J]. Metall. Mater. Trans., 2015, 46A: 6018
[35] Huang Y G. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program [R]. Cambridge: Harvard University, 1991
[36] Peirce D, Asaro R J, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metall., 1982, 30: 1087
[37] Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. J. Mech. Phys. Solids, 1977, 25: 309
[38] Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
[39] Hutchinson J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proc. R. Soc. London, 1976, 348A: 101
[40] Zheng X Y, Kong Y, Chang T T, et al. High-throughput computing assisted by knowledge graph to study the correlation between microstructure and mechanical properties of 6XXX aluminum alloy [J]. Materials, 2022, 15: 5296
[41] Roters F, Wang Y, Kuo J C, et al. Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations [J]. Adv. Eng. Mater., 2004, 6: 653
[42] Starink M J, Wang S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2003, 51: 5131
[1] LUO Laima, WEI Guoqing, LIU Zhen, ZHU Xiaoyong, WU Yucheng. Formation and Evolution of Defects in Tungsten Materials[J]. 金属学报, 2025, 61(4): 526-540.
[2] ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 361-371.
[3] WANG Yanxu, GONG Wu, SU Yuhua, LI Bing. Application of Neutron Characterization Techniques to Metallic Structural Materials[J]. 金属学报, 2024, 60(8): 1001-1016.
[4] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[5] YANG Ruize, ZHAI Ruzong, REN Shaofei, SUN Mingyue, XU Bin, QIAO Yanxin, YANG Lanlan. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. 金属学报, 2024, 60(7): 915-925.
[6] LIU Chang, WU Ge, LU Jian. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms[J]. 金属学报, 2024, 60(1): 16-29.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[10] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[13] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[14] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[15] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
No Suggested Reading articles found!